search
Back to results

Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease (ECG-AID)

Primary Purpose

Atrial Fibrillation, Structural Heart Disease

Status
Recruiting
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Zio Patch Monitor
Echocardiogram
Sponsored by
Tempus Labs
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional diagnostic trial for Atrial Fibrillation focused on measuring Heart Disease, Structural Heart Disease, Machine Learning, Electrocardiogram, Atrial Fibrillation

Eligibility Criteria

40 Years - undefined (Adult, Older Adult)All SexesDoes not accept healthy volunteers

Inclusion Criteria:

  • Retrospective Phase:
  • Adults aged 40 or older.
  • At least 1 ECG obtained during routine clinical care prior to 2018.
  • Prospective Phase:
  • AF Cohort:
  • Adults aged 65 or older at the time of ECG.
  • ECG obtained as part of a clinical care between study start date and the end of study recruitment
  • SHD Cohort:
  • Adults aged 40 or older at the time of the ECG.
  • ECG obtained as part of a clinical care between study start date and the end of study recruitment

Exclusion Criteria:

  • Retrospective Phase:
  • Patients who have previously requested that their data not be involved in any secondary use application such as a research study.
  • Prospective Phase:
  • AF Cohort:
  • Any clinical or social factor that would prohibit completing the follow-up studies in a timely fashion.
  • Patient unable to identify a licensed healthcare provider to receive the results of the patch monitor.
  • Patient currently admitted to the hospital (at time of contact/consent)
  • Permanent pacemaker or implanted cardiac defibrillator or implanted loop recorder.
  • History of atrial fibrillation or atrial flutter.
  • Cardiac surgery within 30 days prior to the index ECG
  • Cardiac surgery planned within the next 6 months.
  • Allergy to adhesive.
  • SHD Cohort:
  • Any clinical or social factor that would prohibit completing the follow-up studies in a timely fashion.
  • Patient unable to identify a licensed healthcare provider to receive the results of the echocardiogram.
  • Patient currently admitted to the hospital (at time of contact/consent).
  • History of SHD defined as any of the following: severe mitral regurgitation, severe tricuspid regurgitation, moderate or severe aortic stenosis, moderate or severe aortic regurgitation, moderate or severe mitral stenosis, left ventricular systolic dysfunction (LVEF ≤ 40%), or increased septal wall thickness > 15 mm.
  • Allergy to ultrasound gel.

Sites / Locations

  • Corewell HealthRecruiting
  • TriHealthRecruiting
  • Geisinger Medical CenterRecruiting

Arms of the Study

Arm 1

Arm 2

Arm Type

Other

Other

Arm Label

AF Cohort

SHD Cohort

Arm Description

Will be comprised of 500 participants predicted to be increased risk for Atrial Fibrillation (AF) will receive a 2-week ECG patch monitor to wear (up to 3 times over 12 months),

Will be comprised 500 participants at increased risk for Structural Heart Disease (SHD) will be referred for a single echocardiogram.

Outcomes

Primary Outcome Measures

Positive-predictive value (PPV) of the AF device at six months
AF will be defined by findings from the patch monitor, participant interview or the EHR-based phenotype definition and will be considered positive if a diagnosis occurs within 6 months of the index ECG.
Positive-predictive value (PPV) of the SHD device at six months
Structural heart disease will be defined as: moderate or severe mitral stenosis, aortic regurgitation, or aortic stenosis severe mitral or tricuspid regurgitation LVEF ≤ 40% Interventricular septal thickness >15mm

Secondary Outcome Measures

Positive-predictive value (PPV) of the AF device at 12 months
AF will be defined by findings from the patch monitor, participant interview or the EHR-based phenotype definition and will be considered positive if a diagnosis occurs within 12 months of the index ECG.
Positive-predictive value (PPV) of the SHD device at 12 months
Structural heart disease will be defined as: moderate or severe mitral stenosis, aortic regurgitation, or aortic stenosis severe mitral or tricuspid regurgitation LVEF ≤ 40% Interventricular septal thickness >15mm

Full Information

First Posted
June 28, 2022
Last Updated
April 18, 2023
Sponsor
Tempus Labs
search

1. Study Identification

Unique Protocol Identification Number
NCT05442203
Brief Title
Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease
Acronym
ECG-AID
Official Title
Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease
Study Type
Interventional

2. Study Status

Record Verification Date
April 2023
Overall Recruitment Status
Recruiting
Study Start Date
September 7, 2022 (Actual)
Primary Completion Date
September 2024 (Anticipated)
Study Completion Date
September 2024 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Tempus Labs

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
Yes
Device Product Not Approved or Cleared by U.S. FDA
Yes
Product Manufactured in and Exported from the U.S.
No
Data Monitoring Committee
No

5. Study Description

Brief Summary
Atrial fibrillation is an abnormal beating of the heart that can lead to stroke or heart failure. Structural heart diseases are conditions that affect the heart valves or heart muscle and can cause permanent heart damage if left untreated. Sometimes people have atrial fibrillation or structural heart disease and do not know it. The purpose of this study is to evaluate two devices that can predict who has or may develop atrial fibrillation or structural heart disease based on the results of an electrocardiogram.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Atrial Fibrillation, Structural Heart Disease
Keywords
Heart Disease, Structural Heart Disease, Machine Learning, Electrocardiogram, Atrial Fibrillation

7. Study Design

Primary Purpose
Diagnostic
Study Phase
Not Applicable
Interventional Study Model
Single Group Assignment
Masking
None (Open Label)
Allocation
N/A
Enrollment
1000 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
AF Cohort
Arm Type
Other
Arm Description
Will be comprised of 500 participants predicted to be increased risk for Atrial Fibrillation (AF) will receive a 2-week ECG patch monitor to wear (up to 3 times over 12 months),
Arm Title
SHD Cohort
Arm Type
Other
Arm Description
Will be comprised 500 participants at increased risk for Structural Heart Disease (SHD) will be referred for a single echocardiogram.
Intervention Type
Device
Intervention Name(s)
Zio Patch Monitor
Intervention Description
Patch monitor will be applied and worn for a 2-week period at baseline, month 6, and month 12 after assignment to the AF arm.
Intervention Type
Device
Intervention Name(s)
Echocardiogram
Intervention Description
Ultrasound study of the heart will be completed upon patient consent after assignment to the SHD arm.
Primary Outcome Measure Information:
Title
Positive-predictive value (PPV) of the AF device at six months
Description
AF will be defined by findings from the patch monitor, participant interview or the EHR-based phenotype definition and will be considered positive if a diagnosis occurs within 6 months of the index ECG.
Time Frame
12 months
Title
Positive-predictive value (PPV) of the SHD device at six months
Description
Structural heart disease will be defined as: moderate or severe mitral stenosis, aortic regurgitation, or aortic stenosis severe mitral or tricuspid regurgitation LVEF ≤ 40% Interventricular septal thickness >15mm
Time Frame
12 months
Secondary Outcome Measure Information:
Title
Positive-predictive value (PPV) of the AF device at 12 months
Description
AF will be defined by findings from the patch monitor, participant interview or the EHR-based phenotype definition and will be considered positive if a diagnosis occurs within 12 months of the index ECG.
Time Frame
18 months
Title
Positive-predictive value (PPV) of the SHD device at 12 months
Description
Structural heart disease will be defined as: moderate or severe mitral stenosis, aortic regurgitation, or aortic stenosis severe mitral or tricuspid regurgitation LVEF ≤ 40% Interventricular septal thickness >15mm
Time Frame
18 months

10. Eligibility

Sex
All
Minimum Age & Unit of Time
40 Years
Accepts Healthy Volunteers
No
Eligibility Criteria
Inclusion Criteria: Retrospective Phase: Adults aged 40 or older. At least 1 ECG obtained during routine clinical care. Prospective Phase: AF Cohort: Adults aged 65 or older at the time of ECG. ECG obtained as part of a clinical care. Patient is able to identify a licensed healthcare provider to receive the results of the patch monitor. SHD Cohort: Adults aged 40 or older at the time of the ECG. ECG obtained as part of a clinical care between study start date and the end of study recruitment Patient is able to identify a licensed healthcare provider to receive the results of the echocardiogram. Exclusion Criteria: Retrospective Phase: Patients who have previously requested that their data not be involved in any secondary use application such as a research study. Prospective Phase: AF Cohort: Any clinical or social factor that would prohibit completing the follow-up studies in a timely fashion. Patient currently admitted to the hospital (at time of consent) Permanent pacemaker or implanted cardiac defibrillator or implanted loop recorder. History of atrial fibrillation or atrial flutter. Cardiac surgery within 30 days prior to the index ECG Cardiac surgery planned within the next 6 months. Allergy to adhesive. SHD Cohort: Any clinical or social factor that would prohibit completing the follow-up studies in a timely fashion. Patient currently admitted to the hospital (at time of consent). History of SHD defined as any of the following: severe mitral regurgitation, severe tricuspid regurgitation, moderate or severe aortic stenosis, moderate or severe aortic regurgitation, moderate or severe mitral stenosis, left ventricular systolic dysfunction (LVEF ≤ 40%), or increased septal wall thickness > 15 mm. Allergy to ultrasound gel.
Central Contact Person:
First Name & Middle Initial & Last Name or Official Title & Degree
ECG-AID Study
Phone
833-514-4187
Email
ecg-aid-study@tempus.com
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
John Pfeifer, MD
Organizational Affiliation
Tempus Labs, Inc.
Official's Role
Principal Investigator
Facility Information:
Facility Name
Corewell Health
City
Grand Rapids
State/Province
Michigan
ZIP/Postal Code
49503
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Leigha Schutte
Phone
616-885-5000
First Name & Middle Initial & Last Name & Degree
Thomas Boyden, MD
Facility Name
TriHealth
City
Cincinnati
State/Province
Ohio
ZIP/Postal Code
45242
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Lisa Henderson
Phone
513-246-2400
First Name & Middle Initial & Last Name & Degree
Gaurang Gandhi, MD
Facility Name
Geisinger Medical Center
City
Danville
State/Province
Pennsylvania
ZIP/Postal Code
17822
Country
United States
Individual Site Status
Recruiting
Facility Contact:
First Name & Middle Initial & Last Name & Degree
Christopher Nevius
Phone
570-271-5267
First Name & Middle Initial & Last Name & Degree
Thomas Morland, MD

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
26449143
Citation
Gopinathannair R, Etheridge SP, Marchlinski FE, Spinale FG, Lakkireddy D, Olshansky B. Arrhythmia-Induced Cardiomyopathies: Mechanisms, Recognition, and Management. J Am Coll Cardiol. 2015 Oct 13;66(15):1714-28. doi: 10.1016/j.jacc.2015.08.038.
Results Reference
background
PubMed Identifier
17577005
Citation
Hart RG, Pearce LA, Aguilar MI. Meta-analysis: antithrombotic therapy to prevent stroke in patients who have nonvalvular atrial fibrillation. Ann Intern Med. 2007 Jun 19;146(12):857-67. doi: 10.7326/0003-4819-146-12-200706190-00007.
Results Reference
background
PubMed Identifier
19717844
Citation
Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J, Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R, Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L; RE-LY Steering Committee and Investigators. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009 Sep 17;361(12):1139-51. doi: 10.1056/NEJMoa0905561. Epub 2009 Aug 30. Erratum In: N Engl J Med. 2010 Nov 4;363(19):1877.
Results Reference
background
PubMed Identifier
21830957
Citation
Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G, Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, Berkowitz SD, Fox KA, Califf RM; ROCKET AF Investigators. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011 Sep 8;365(10):883-91. doi: 10.1056/NEJMoa1009638. Epub 2011 Aug 10.
Results Reference
background
PubMed Identifier
21870978
Citation
Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL, Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L; ARISTOTLE Committees and Investigators. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011 Sep 15;365(11):981-92. doi: 10.1056/NEJMoa1107039. Epub 2011 Aug 27.
Results Reference
background
PubMed Identifier
8281651
Citation
Page RL, Wilkinson WE, Clair WK, McCarthy EA, Pritchett EL. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation. 1994 Jan;89(1):224-7. doi: 10.1161/01.cir.89.1.224.
Results Reference
background
PubMed Identifier
28842973
Citation
Reiffel JA, Verma A, Kowey PR, Halperin JL, Gersh BJ, Wachter R, Pouliot E, Ziegler PD; REVEAL AF Investigators. Incidence of Previously Undiagnosed Atrial Fibrillation Using Insertable Cardiac Monitors in a High-Risk Population: The REVEAL AF Study. JAMA Cardiol. 2017 Oct 1;2(10):1120-1127. doi: 10.1001/jamacardio.2017.3180.
Results Reference
background
PubMed Identifier
22236222
Citation
Healey JS, Connolly SJ, Gold MR, Israel CW, Van Gelder IC, Capucci A, Lau CP, Fain E, Yang S, Bailleul C, Morillo CA, Carlson M, Themeles E, Kaufman ES, Hohnloser SH; ASSERT Investigators. Subclinical atrial fibrillation and the risk of stroke. N Engl J Med. 2012 Jan 12;366(2):120-9. doi: 10.1056/NEJMoa1105575. Erratum In: N Engl J Med. 2016 Mar 10;374(10):998.
Results Reference
background
PubMed Identifier
29998336
Citation
Steinhubl SR, Waalen J, Edwards AM, Ariniello LM, Mehta RR, Ebner GS, Carter C, Baca-Motes K, Felicione E, Sarich T, Topol EJ. Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation: The mSToPS Randomized Clinical Trial. JAMA. 2018 Jul 10;320(2):146-155. doi: 10.1001/jama.2018.8102.
Results Reference
background
PubMed Identifier
31722151
Citation
Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, Balasubramanian V, Russo AM, Rajmane A, Cheung L, Hung G, Lee J, Kowey P, Talati N, Nag D, Gummidipundi SE, Beatty A, Hills MT, Desai S, Granger CB, Desai M, Turakhia MP; Apple Heart Study Investigators. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. N Engl J Med. 2019 Nov 14;381(20):1909-1917. doi: 10.1056/NEJMoa1901183.
Results Reference
background
PubMed Identifier
31487545
Citation
Guo Y, Wang H, Zhang H, Liu T, Liang Z, Xia Y, Yan L, Xing Y, Shi H, Li S, Liu Y, Liu F, Feng M, Chen Y, Lip GYH; MAFA II Investigators. Mobile Photoplethysmographic Technology to Detect Atrial Fibrillation. J Am Coll Cardiol. 2019 Nov 12;74(19):2365-2375. doi: 10.1016/j.jacc.2019.08.019. Epub 2019 Sep 2.
Results Reference
background
PubMed Identifier
23537808
Citation
Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Moser CB, Sinner MF, Sotoodehnia N, Fontes JD, Janssens AC, Kronmal RA, Magnani JW, Witteman JC, Chamberlain AM, Lubitz SA, Schnabel RB, Agarwal SK, McManus DD, Ellinor PT, Larson MG, Burke GL, Launer LJ, Hofman A, Levy D, Gottdiener JS, Kaab S, Couper D, Harris TB, Soliman EZ, Stricker BH, Gudnason V, Heckbert SR, Benjamin EJ. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc. 2013 Mar 18;2(2):e000102. doi: 10.1161/JAHA.112.000102.
Results Reference
background
PubMed Identifier
27502851
Citation
Christophersen IE, Yin X, Larson MG, Lubitz SA, Magnani JW, McManus DD, Ellinor PT, Benjamin EJ. A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study. Am Heart J. 2016 Aug;178:45-54. doi: 10.1016/j.ahj.2016.05.004. Epub 2016 May 17.
Results Reference
background
PubMed Identifier
31378392
Citation
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, Carter RE, Yao X, Rabinstein AA, Erickson BJ, Kapa S, Friedman PA. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019 Sep 7;394(10201):861-867. doi: 10.1016/S0140-6736(19)31721-0. Epub 2019 Aug 1.
Results Reference
background
PubMed Identifier
33588584
Citation
Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, vanMaanen DP, Hartzel DN, Ruhl JA, Lagerman BF, Rocha DB, Stoudt NJ, Schneider G, Johnson KW, Zimmerman N, Leader JB, Kirchner HL, Griessenauer CJ, Hafez A, Good CW, Fornwalt BK, Haggerty CM. Deep Neural Networks Can Predict New-Onset Atrial Fibrillation From the 12-Lead ECG and Help Identify Those at Risk of Atrial Fibrillation-Related Stroke. Circulation. 2021 Mar 30;143(13):1287-1298. doi: 10.1161/CIRCULATIONAHA.120.047829. Epub 2021 Feb 16.
Results Reference
background
PubMed Identifier
4894151
Citation
Ross J Jr, Braunwald E. Aortic stenosis. Circulation. 1968 Jul;38(1 Suppl):61-7. doi: 10.1161/01.cir.38.1s5.v-61. No abstract available.
Results Reference
background
PubMed Identifier
495418
Citation
Cheitlin MD, Gertz EW, Brundage BH, Carlson CJ, Quash JA, Bode RS Jr. Rate of progression of severity of valvular aortic stenosis in the adult. Am Heart J. 1979 Dec;98(6):689-700. doi: 10.1016/0002-8703(79)90465-4.
Results Reference
background
PubMed Identifier
2009886
Citation
Davies SW, Gershlick AH, Balcon R. Progression of valvar aortic stenosis: a long-term retrospective study. Eur Heart J. 1991 Jan;12(1):10-4. doi: 10.1093/oxfordjournals.eurheartj.a059815.
Results Reference
background
PubMed Identifier
12932612
Citation
Curtis JP, Sokol SI, Wang Y, Rathore SS, Ko DT, Jadbabaie F, Portnay EL, Marshalko SJ, Radford MJ, Krumholz HM. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003 Aug 20;42(4):736-42. doi: 10.1016/s0735-1097(03)00789-7.
Results Reference
background
PubMed Identifier
32042139
Citation
Martinez-Naharro A, Baksi AJ, Hawkins PN, Fontana M. Diagnostic imaging of cardiac amyloidosis. Nat Rev Cardiol. 2020 Jul;17(7):413-426. doi: 10.1038/s41569-020-0334-7. Epub 2020 Feb 10.
Results Reference
background
PubMed Identifier
33342587
Citation
Writing Committee Members; Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, Jneid H, Krieger EV, Mack M, McLeod C, O'Gara PT, Rigolin VH, Sundt TM 3rd, Thompson A, Toly C. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol. 2021 Feb 2;77(4):450-500. doi: 10.1016/j.jacc.2020.11.035. Epub 2020 Dec 17. Erratum In: J Am Coll Cardiol. 2021 Mar 9;77(9):1276.
Results Reference
background
PubMed Identifier
25712077
Citation
Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015 Mar;16(3):233-70. doi: 10.1093/ehjci/jev014. Erratum In: Eur Heart J Cardiovasc Imaging. 2016 Apr;17(4):412. Eur Heart J Cardiovasc Imaging. 2016 Sep;17 (9):969.
Results Reference
background
PubMed Identifier
30046835
Citation
Alexander KM, Orav J, Singh A, Jacob SA, Menon A, Padera RF, Kijewski MF, Liao R, Di Carli MF, Laubach JP, Falk RH, Dorbala S. Geographic Disparities in Reported US Amyloidosis Mortality From 1979 to 2015: Potential Underdetection of Cardiac Amyloidosis. JAMA Cardiol. 2018 Sep 1;3(9):865-870. doi: 10.1001/jamacardio.2018.2093.
Results Reference
background
PubMed Identifier
27354049
Citation
d'Arcy JL, Coffey S, Loudon MA, Kennedy A, Pearson-Stuttard J, Birks J, Frangou E, Farmer AJ, Mant D, Wilson J, Myerson SG, Prendergast BD. Large-scale community echocardiographic screening reveals a major burden of undiagnosed valvular heart disease in older people: the OxVALVE Population Cohort Study. Eur Heart J. 2016 Dec 14;37(47):3515-3522. doi: 10.1093/eurheartj/ehw229. Epub 2016 Jun 26.
Results Reference
background
PubMed Identifier
27006153
Citation
Maron MS, Hellawell JL, Lucove JC, Farzaneh-Far R, Olivotto I. Occurrence of Clinically Diagnosed Hypertrophic Cardiomyopathy in the United States. Am J Cardiol. 2016 May 15;117(10):1651-1654. doi: 10.1016/j.amjcard.2016.02.044. Epub 2016 Mar 2.
Results Reference
background
PubMed Identifier
16980116
Citation
Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet. 2006 Sep 16;368(9540):1005-11. doi: 10.1016/S0140-6736(06)69208-8.
Results Reference
background
PubMed Identifier
32200712
Citation
Kwon JM, Lee SY, Jeon KH, Lee Y, Kim KH, Park J, Oh BH, Lee MM. Deep Learning-Based Algorithm for Detecting Aortic Stenosis Using Electrocardiography. J Am Heart Assoc. 2020 Apr 7;9(7):e014717. doi: 10.1161/JAHA.119.014717. Epub 2020 Mar 21.
Results Reference
background
PubMed Identifier
30617318
Citation
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, Pellikka PA, Enriquez-Sarano M, Noseworthy PA, Munger TM, Asirvatham SJ, Scott CG, Carter RE, Friedman PA. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019 Jan;25(1):70-74. doi: 10.1038/s41591-018-0240-2. Epub 2019 Jan 7.
Results Reference
background
PubMed Identifier
33748852
Citation
Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, Murphree DH, Michelena HI, Enriquez-Sarano M, Carter RE, Johnson PW, Noseworthy PA, Lopez-Jimenez F, Oh JK. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021 Aug 7;42(30):2885-2896. doi: 10.1093/eurheartj/ehab153.
Results Reference
background
PubMed Identifier
35533093
Citation
Ulloa-Cerna AE, Jing L, Pfeifer JM, Raghunath S, Ruhl JA, Rocha DB, Leader JB, Zimmerman N, Lee G, Steinhubl SR, Good CW, Haggerty CM, Fornwalt BK, Chen R. rECHOmmend: An ECG-Based Machine Learning Approach for Identifying Patients at Increased Risk of Undiagnosed Structural Heart Disease Detectable by Echocardiography. Circulation. 2022 Jul 5;146(1):36-47. doi: 10.1161/CIRCULATIONAHA.121.057869. Epub 2022 May 9.
Results Reference
background
PubMed Identifier
3975954
Citation
Britton M, Gustafsson C. Non-rheumatic atrial fibrillation as a risk factor for stroke. Stroke. 1985 Mar-Apr;16(2):182-8. doi: 10.1161/01.str.16.2.182.
Results Reference
result
PubMed Identifier
570666
Citation
Wolf PA, Dawber TR, Thomas HE Jr, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology. 1978 Oct;28(10):973-7. doi: 10.1212/wnl.28.10.973.
Results Reference
result
PubMed Identifier
12401529
Citation
Stewart S, Hart CL, Hole DJ, McMurray JJ. A population-based study of the long-term risks associated with atrial fibrillation: 20-year follow-up of the Renfrew/Paisley study. Am J Med. 2002 Oct 1;113(5):359-64. doi: 10.1016/s0002-9343(02)01236-6.
Results Reference
result

Learn more about this trial

Electrocardiogram-based Artificial Intelligence-assisted Detection of Heart Disease

We'll reach out to this number within 24 hrs