search
Back to results

Phase II/III Study of the AVX/COVID-12 Vaccine Against COVID-19 Applied as a Booster.

Primary Purpose

SARS-CoV-2 Infection

Status
Completed
Phase
Phase 2
Locations
Mexico
Study Type
Interventional
Intervention
AVX-COVID/12
ChAdOx-1-S[recombinant]
Sponsored by
Laboratorio Avi-Mex, S.A. de C.V.
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional prevention trial for SARS-CoV-2 Infection focused on measuring Newcastle Disease Virus, rNDV, COVID-19, SARS-Cov-2 Vaccine, Booster COVID-19 Vaccine

Eligibility Criteria

18 Years - undefined (Adult, Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria: People ≥18 years old. Any genre. Have received their informed consent. Negative PCR test for SARS-CoV-2 during the screening visit. Negative pregnancy test in women with child-bearing potential. Commitment to maintain adequate prevention measures to avoid contagion by SARS-CoV-2 throughout their participation in the study considering their strict following for the first 14 days after the baseline visit (use of face masks in closed places, social distancing measures in open spaces and frequent handwashing). Have been vaccinated with any of the approved vaccines against SARS-CoV-2 (at least once). Exclusion Criteria: History of hypersensibility or allergy to any of the vaccine compounds. History of severe anaphylactic reactions of any cause. Fever at the baseline visit. Active participation in any other clinical trial or experimental intervention within last 3 months. Have received any vaccine (experimental or approved) within 30 days before baseline visit, except for influenza vaccine. The last anti-COVID vaccination was less than 4 months ago. SARS-CoV-2 infection occurred in less than 1 month ago. Pregnant or nursing women. Child-bearing potential and sexually active women who do not use highly effective birth control methods (oral contraceptives, intrauterine device, subcutaneous implant, transdermal patch used at least within 3 months) at the time of enrolment. Fertile and sexually active men not willing to strictly use (in all relationships) barrier methods of birth control throughout study. Those participants (both sexes) not sexually active can participate in the study if they are committed to avoid sexual intercourse throughout study (6 months). Chronic diseases that require use of immunosuppressive agents or immune response modulators (for instance: systemic corticosteroids, cyclosporine, rituximab, among others). Cancer under active chemotherapy treatment. Subjects with HIV infection history. Subjects with chronic renal or liver disease who have shown an infectious condition that required hospitalization or treatment with intravenous drugs within the last year prior baseline visit.

Sites / Locations

  • CAIMED Investigación en Salud S.A. de C.V.
  • Centro de Investigación Clínica Chapultepec S.A. de C.V.
  • Unidad de Medicina Familiar No. 20 - IMSS
  • Centro de Investigación Clínica Acelerada, S.C.
  • Clinical Research Institute S.C.
  • Centro de Investigación Clínica del Pacífico, S.A. de C.V.
  • Sociedad Administradora de Servicios de Salud, S.C.
  • Centro de Investigación y Avances Médicos Especializados / RED OSMO Cancún
  • Centro Multidisciplinario para el Desarrollo Especializado de la Investigación Clinica en Yucatán S.C.P.
  • Jules Bordet Medical Service, S.C.P. / Khöler & Milstein Research
  • Unidad de Atención Médica e Investigación en Salud, S.C.P.
  • Promotora Médica Aguascalientes, S.A. de C.V.
  • Oaxaca Site Management Organization, S.C.
  • Profesionales Médicos Desarrollados, S.C. (Instituto Veracruzano de Investigación Clínica)

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

Arm 7

Arm Type

Experimental

Active Comparator

Experimental

Active Comparator

Experimental

Experimental

Active Comparator

Arm Label

Phase II - Experimental

Phase II - Active Control

Phase III - Experimental

Phase III - Active Control

Phase III - Security

Phase II- Experimental

Phase II- Active Control

Arm Description

AVX-COVID/12 Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response, Cellular response

ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response, Cellular response

AVX-COVID/12 Intramuscular Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response

ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response

AVX-COVID/12 Intramuscular Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety.

AVX-COVID/12 Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response.

ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response.

Outcomes

Primary Outcome Measures

Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Serum IgG, neutralizing antibodies
Phase II - T-cell elicited responses
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Phase III - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Serum IgG, neutralizing antibodies

Secondary Outcome Measures

Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Serum IgG, neutralizing antibodies
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Serum IgG, neutralizing antibodies
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Serum IgG, neutralizing antibodies
Phase II - T-cell elicited responses
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Phase II - T-cell elicited responses
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Phase II - T-cell elicited responses
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Phase III - Incidence of symptomatic COVID-19 disease cases
Document the incidence of COVID-19 disease symptomatic cases in both groups (experimental vaccine and active control).
Phase III - Incidence of severe COVID-19 disease cases or mortality
Document the incidence of severe or mortality COVID-19 disease cases in both groups (experimental vaccine and active control).

Full Information

First Posted
December 21, 2022
Last Updated
September 13, 2023
Sponsor
Laboratorio Avi-Mex, S.A. de C.V.
Collaborators
National Council of Science and Technology, Mexico, Instituto Nacional de Enfermedades Respiratorias
search

1. Study Identification

Unique Protocol Identification Number
NCT05710783
Brief Title
Phase II/III Study of the AVX/COVID-12 Vaccine Against COVID-19 Applied as a Booster.
Official Title
Phase II/III Parallel, Double-blind, Non-inferiority Study With Active Control, to Evaluate the Immunogenicity and Safety of a Booster Immunization Scheme With a Single Intramuscular Dose of the Recombinant Vaccine Against SARS-CoV-2
Study Type
Interventional

2. Study Status

Record Verification Date
June 2023
Overall Recruitment Status
Completed
Study Start Date
November 9, 2022 (Actual)
Primary Completion Date
December 28, 2022 (Actual)
Study Completion Date
September 10, 2023 (Actual)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
Laboratorio Avi-Mex, S.A. de C.V.
Collaborators
National Council of Science and Technology, Mexico, Instituto Nacional de Enfermedades Respiratorias

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
This is a phase II/III parallel, double-blind, active-controlled, non-inferiority study to evaluate immunogenicity and safety of a booster immunization scheme of a single intramuscular dose of the recombinant vaccine against SARS-CoV-2 (AVX/COVID-12 vaccine) based on live recombinant Newcastle disease virus (rNDV) vector in healthy adults with a history of vaccination against COVID-19. The study is divided into two phases with immuno-bridging and 3000 healthy subjects showing evidence of prior immunity to SARS-CoV-2 are estimated to enrol. To verify non-inferiority in a determined number of subjects an intramuscular dose of the COVID-19 vaccine (ChAdOx-1-S[recombinant]) shall be used as active control in originally randomised subjects. The study shall be carried out in several sites of clinical research in Mexico.
Detailed Description
General objective: To demonstrate immunogenicity and safety of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in previously vaccinated subjects and prove non-inferiority producing neutralizing antibodies anti-COVID-19 from 14 days after administration in comparison to the active control, whose efficacy has been formerly established in a placebo-controlled clinical study. Primary objective: Phase II: To demonstrate immunogenicity of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot to increase levels of Spike protein to ACE2 binding-inhibitory antibodies, as well as to increase titres of neutralizing antibodies anti-COVID-19 from 14 days after vaccine administration. Phase III: To demonstrate non-inferiority of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot for seroconversion and production of neutralizing antibodies anti-COVID-19 from 14 days after vaccine administration compared to active control, whose efficacy has been formerly established in a placebo-controlled clinical study. Secondary objectives: Phase II: To evaluate the extent of the increase in the neutralizing titres after 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot. To evaluate production of interferon-gamma by peripheral blood T lymphocytes in response to the Spike protein or its derivatives peptides stimulation following 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in a subgroup of subjects randomly selected among the study population. To compare production of interferon-gamma by peripheral blood T lymphocytes in response to the Spike protein or its derivatives peptides stimulation following 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in a subgroup of subjects randomly selected among the study population to production in subjects vaccinated with active control. Phase III: To document the incidence of symptomatic COVID-19 disease cases in both groups (experimental vaccine and active control) from 14 days after administration. To document the incidence of severe or mortality COVID-19 disease cases in both groups (experimental vaccine and active control) from 14 days after administration. Safety objective (primary): Both Phases: To evaluate safety of AVX/COVID-12 vaccine immunization as a single intramuscular booster shot in comparison to the active control. Exploratory objectives: Phase II: To evaluate the extent of the increase in following neutralizing titres 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot as per the history of immunization/infection at the time of enrolment. To evaluate the neutralizing capacity of anti-SARS-CoV-2 antibodies gained following 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in neutralization tests of pseudovirus expressing Spike proteins derived from SARS-CoV-2 variants of concern. To evaluate production of cytokines by peripheral blood T lymphocytes in response to the Spike protein or its derivatives (peptides) stimulation following 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in a subgroup of subjects randomly selected among the population study. To compare production of cytokines by peripheral blood T lymphocytes in response to the Spike protein or its derivatives (peptides) stimulation following 0, 14, 90 and 180 days of administration of the AVX/COVID-12 vaccine (108.0 EID50/dose) as a single intramuscular booster shot in a subgroup of subjects randomly selected among the population study to production in subjects vaccinated with active control. Phase III: To compare geometric means of neutralizing titres after AVX/COVID-12 (108.0 EID50/dose) vaccination as a single intramuscular booster shot in the following active-controlled subgroups: Subjects younger than 65 years. Subjects older than 65 years. Subjects with at least one comorbidity (any). Subjects with obesity (BMI >30). Subjects with Diabetes Mellitus. Subjects with hypertension. Subjects with smoking history. Subjects with asthma. Subjects with cardiovascular disease. Subjects with chronic obstructive pulmonary disease. Subjects with chronic renal disease. Subjects with liver disease. Subjects with cancer history. Clinical trial hypothesis: Phase II: In subjects with prior anti-SARS-CoV-2 vaccination longer than 4 months ago, 14 days after intramuscular administration of the AVX/COVID-12 vaccine, ≥80% of the subjects showed an inhibitory capacity of the receptor-binding domain (spike protein binds to ACE2) above 95% and levels of neutralizing titres statistically greater than baseline tires (vaccination day). Phase III: Immunogenicity assessed as seroconversion rate and production of neutralizing antibodies after administration of the AVX/COVID-12 vaccine as a single intramuscular booster shot of 108.0 EID50/dose showed non-inferiority to active control from 14 days after administration. Justification of the product use in clinical research. Nonclinical studies and Phase I clinical study have shown safety of the AVX/COVID-12 vaccine by intramuscular route. Signs of immunogenicity in several animals are clear. Evaluation of the immune response in healthy volunteers in the Phase I clinical study after administration of the vaccine by intramuscular route as a single dose of 108.0 EID50/dose showed immunogenicity of the vaccine. Partial reports from a Phase II boosting study in subjects with low levels of immunity at the time of enrolment strongly suggest the vaccine is safe and immunogenic in this population. Altogether, these data justify the continuation of the AVX/COVID-12 vaccine development program. Due to the advanced stage of the pandemics and vaccination programs worldwide, it is important to assess the capacity of the AVX/COVID-12 vaccine to boost the pre-existing immunity in open previously vaccinated population. Study design: A phase II/III parallel, double-blind, active-controlled, non-inferiority study to evaluate immunogenicity and safety of a booster immunization scheme with a single intramuscular dose of the recombinant vaccine against SARS-CoV-2 (AVX/COVID-12 vaccine) based on live recombinant Newcastle disease virus (rNDV) vector in healthy adults with a history of vaccination against COVID-19. Summarised description of Phase II design: Subjects who meet the study inclusion and not exclusion criteria shall be randomised (1:1) to receive the AVX/COVID-12 vaccine or active control. From the first 400 subjects of study samples corresponding to the efficacy criteria for Phases II and III shall be collected (including samples to determine cell response in a randomly-defined subgroup). If at the end of the main endpoint assessment of the study phase corresponding to Phase II (day 14) it is determined the intervention with AVX-COVID-12 vaccine did not meet the specified objective (i. e., neutralizing capacity above 95% was not showed in 80% of the population vaccinated in surrogate testing and a significant change when comparing the geometric means of population neutralizing antibodies titres from days 0 to 14) the enrolment shall be stopped in order to meet the criteria related to the Phase III objectives, otherwise the enrolment shall continue consecutively. Additionally, the first 400 subjects enrolled (corresponding to Phase II (200 vaccinated with the experimental vaccine and 200 with the active control)) shall be evaluated 90 and 180 days after vaccination to determine the humoral immune response performance at these moments. A sub-sample of 100 subjects randomly selected (50 experimental vaccine and 50 active control) shall be evaluated regarding cell-mediated immune response in addition to the humoral response at the time of enrolment and 14, 90 and 180 days after vaccination. Comparison of the safety evaluation related to Phase II shall be carried out with the population receiving active control as reference. An interim futility analysis shall be carried out for non-inferiority criteria of Phase III at the end of enrolment corresponding to Phase II by Fleming-alpha spending function. Summarised description of Phase III design: In total 3832 subjects shall be enrolled divided into 3000 subjects to receive the experimental vaccine (2168 + 832 (632 Phase III + 200 from Phase II/III)) and 832 subjects (632 Phase II + 200 from Phase II/III) will receive active control. The first 1664 subjects enrolled shall be randomised 1:1 to receive the experimental vaccine or active control and at the end of this phase the subsequent number of subjects enrolled shall receive only the experimental vaccine up to 3000 subjects. From the first 1664 subjects of study (832 randomised to receive the experimental vaccine and 832 vaccinated with active control) samples shall be collected on days 0 and 14 to determine total titres of anti-S IgG, total titres of anti-N IgG and anti-SARS-CoV-2 neutralizing titres. Three thousand subjects from safety population and 832 subjects vaccinated with active control shall be followed-up to 180 days to detect symptomatic cases of COVID-19 proved with genetic material detection from nasal/mouth mucus by PCR.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
SARS-CoV-2 Infection
Keywords
Newcastle Disease Virus, rNDV, COVID-19, SARS-Cov-2 Vaccine, Booster COVID-19 Vaccine

7. Study Design

Primary Purpose
Prevention
Study Phase
Phase 2, Phase 3
Interventional Study Model
Parallel Assignment
Model Description
Immuno-bridging
Masking
ParticipantCare ProviderInvestigator
Masking Description
Randomization of patients shall be carried out by a computerized system. Once the informed consent signed, the patient shall be allocated with a number coding with all his/her pseudonymously information during collection and completely anonymised during analysis. The randomization of the first 400 study subjects will include, in addition to 1:1 randomization (experimental vaccine: active control), randomization to participate as a subsample subject for cellular immune response determinations. Once the 1664 subjects have been randomised, the following study subjects shall be designated as experimental vaccine receptors until have enrolled all the study subjects.
Allocation
Randomized
Enrollment
4065 (Actual)

8. Arms, Groups, and Interventions

Arm Title
Phase II - Experimental
Arm Type
Experimental
Arm Description
AVX-COVID/12 Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response, Cellular response
Arm Title
Phase II - Active Control
Arm Type
Active Comparator
Arm Description
ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response, Cellular response
Arm Title
Phase III - Experimental
Arm Type
Experimental
Arm Description
AVX-COVID/12 Intramuscular Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response
Arm Title
Phase III - Active Control
Arm Type
Active Comparator
Arm Description
ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response
Arm Title
Phase III - Security
Arm Type
Experimental
Arm Description
AVX-COVID/12 Intramuscular Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety.
Arm Title
Phase II- Experimental
Arm Type
Experimental
Arm Description
AVX-COVID/12 Dose: 10^8.0 EID50/ intramuscular dose Study parameters: Safety, Serological response.
Arm Title
Phase II- Active Control
Arm Type
Active Comparator
Arm Description
ChAdOx-1-S[recombinant]) intramuscular Study parameters: Safety, Serological response.
Intervention Type
Biological
Intervention Name(s)
AVX-COVID/12
Other Intervention Name(s)
Recombinant NDV Vectored Vaccine for SARS-CoV-2
Intervention Description
Single dose IM administration of a Recombinant Newcastle Disease Virus Vectored Vaccine for SARS-CoV-2
Intervention Type
Biological
Intervention Name(s)
ChAdOx-1-S[recombinant]
Other Intervention Name(s)
AstraZeneca COVID vaccine
Intervention Description
Single dose IM administration of ChAdOx1 nCOV-19 (Astra-Zeneca) adenovirus-vectored vaccine
Primary Outcome Measure Information:
Title
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Description
Serum IgG, neutralizing antibodies
Time Frame
14 to 17 days after vaccination
Title
Phase II - T-cell elicited responses
Description
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Time Frame
Day 14
Title
Phase III - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Description
Serum IgG, neutralizing antibodies
Time Frame
14 to 17 days after vaccination
Secondary Outcome Measure Information:
Title
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Description
Serum IgG, neutralizing antibodies
Time Frame
Day 0 (day of vaccination)
Title
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Description
Serum IgG, neutralizing antibodies
Time Frame
Day 90 after vaccination
Title
Phase II - Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum
Description
Serum IgG, neutralizing antibodies
Time Frame
Day 180 after vaccination
Title
Phase II - T-cell elicited responses
Description
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Time Frame
Day 0 (day of vaccination)
Title
Phase II - T-cell elicited responses
Description
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Time Frame
Day 90 after vaccination
Title
Phase II - T-cell elicited responses
Description
Percentage of cells expressing IL2, TNF-alpha and IFN-gamma by Flow cytometry after challenge with spike protein.
Time Frame
Day 180 after vaccination
Title
Phase III - Incidence of symptomatic COVID-19 disease cases
Description
Document the incidence of COVID-19 disease symptomatic cases in both groups (experimental vaccine and active control).
Time Frame
From 14 days after vaccination
Title
Phase III - Incidence of severe COVID-19 disease cases or mortality
Description
Document the incidence of severe or mortality COVID-19 disease cases in both groups (experimental vaccine and active control).
Time Frame
From 14 days after vaccination
Other Pre-specified Outcome Measures:
Title
Phase II/Phase III - Safety: Adverse Events
Description
Incidence of adverse events
Time Frame
After Day 14 after vaccination
Title
Phase II -Basal titers of Anti-N and anti-S antibodies, distribution of anti-N and anti-S antibodies within study population
Description
Appearance of anti-N and anti-S antibodies
Time Frame
Day 0 (day of vaccination)
Title
Phase II - Increase in titers of Anti-N and anti-S antibodies, distribution of anti-N and anti-S antibodies within study population
Description
Appearance of anti-N and anti-S antibodies
Time Frame
Day 14 after vaccination
Title
Phase II - Increase in titers of Anti-N and anti-S antibodies, distribution of anti-N and anti-S antibodies within study population
Description
Appearance of anti-N and anti-S antibodies
Time Frame
Day 90 after vaccination
Title
Phase II - Increase in titers of Anti-N and anti-S antibodies, distribution of anti-N and anti-S antibodies within study population
Description
Appearance of anti-N and anti-S antibodies
Time Frame
Day 180 after vaccination
Title
Phase II - Incidence of confirmed cases of SARS-CoV-2 infection
Description
Evaluation of the incidence of confirmed cases of SARS-CoV-2 infection in study subjects from systematic vaccination.
Time Frame
Day 28 until the end of the study.
Title
Increase in titres of neutralizing anti SARS-CoV-2 IgG antibodies in serum in selected subpopulations
Description
Subjects younger than 65 years. Subjects older than 65 years. Subjects with at least one comorbidity (any). Subjects with obesity (BMI >30). Subjects with Diabetes Mellitus. Subjects with hypertension. Subjects with smoking history. Subjects with asthma. Subjects with cardiovascular disease. Subjects with chronic obstructive pulmonary disease. Subjects with chronic renal disease. Subjects with liver disease. Subjects with cancer history.
Time Frame
From 14 and up to 180 days after vaccination

10. Eligibility

Sex
All
Minimum Age & Unit of Time
18 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: People ≥18 years old. Any genre. Have received their informed consent. Negative PCR test for SARS-CoV-2 during the screening visit. Negative pregnancy test in women with child-bearing potential. Commitment to maintain adequate prevention measures to avoid contagion by SARS-CoV-2 throughout their participation in the study considering their strict following for the first 14 days after the baseline visit (use of face masks in closed places, social distancing measures in open spaces and frequent handwashing). Have been vaccinated with any of the approved vaccines against SARS-CoV-2 (at least once). Exclusion Criteria: History of hypersensibility or allergy to any of the vaccine compounds. History of severe anaphylactic reactions of any cause. Fever at the baseline visit. Active participation in any other clinical trial or experimental intervention within last 3 months. Have received any vaccine (experimental or approved) within 30 days before baseline visit, except for influenza vaccine. The last anti-COVID vaccination was less than 4 months ago. SARS-CoV-2 infection occurred in less than 1 month ago. Pregnant or nursing women. Child-bearing potential and sexually active women who do not use highly effective birth control methods (oral contraceptives, intrauterine device, subcutaneous implant, transdermal patch used at least within 3 months) at the time of enrolment. Fertile and sexually active men not willing to strictly use (in all relationships) barrier methods of birth control throughout study. Those participants (both sexes) not sexually active can participate in the study if they are committed to avoid sexual intercourse throughout study (6 months). Chronic diseases that require use of immunosuppressive agents or immune response modulators (for instance: systemic corticosteroids, cyclosporine, rituximab, among others). Cancer under active chemotherapy treatment. Subjects with HIV infection history. Subjects with chronic renal or liver disease who have shown an infectious condition that required hospitalization or treatment with intravenous drugs within the last year prior baseline visit.
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Gustavo Peralta
Organizational Affiliation
Laboratorio Avi-Mex, S.A. de C.V.
Official's Role
Study Director
Facility Information:
Facility Name
CAIMED Investigación en Salud S.A. de C.V.
City
Mexico City
State/Province
Cdmx
ZIP/Postal Code
06760
Country
Mexico
Facility Name
Centro de Investigación Clínica Chapultepec S.A. de C.V.
City
Coyoacán
State/Province
Ciudad De México
ZIP/Postal Code
04100
Country
Mexico
Facility Name
Unidad de Medicina Familiar No. 20 - IMSS
City
Gustavo A Madero
State/Province
Ciudad De México
ZIP/Postal Code
07760
Country
Mexico
Facility Name
Centro de Investigación Clínica Acelerada, S.C.
City
Gustavo A. Madero
State/Province
Ciudad De México
ZIP/Postal Code
07369
Country
Mexico
Facility Name
Clinical Research Institute S.C.
City
Tlalnepantla
State/Province
Estado De México
ZIP/Postal Code
54055
Country
Mexico
Facility Name
Centro de Investigación Clínica del Pacífico, S.A. de C.V.
City
Acapulco
State/Province
Guerrero
ZIP/Postal Code
39670
Country
Mexico
Facility Name
Sociedad Administradora de Servicios de Salud, S.C.
City
Morelia
State/Province
Michoacán
ZIP/Postal Code
58260
Country
Mexico
Facility Name
Centro de Investigación y Avances Médicos Especializados / RED OSMO Cancún
City
Cancún
State/Province
Quintana Roo
ZIP/Postal Code
77506
Country
Mexico
Facility Name
Centro Multidisciplinario para el Desarrollo Especializado de la Investigación Clinica en Yucatán S.C.P.
City
Mérida
State/Province
Yucatán
ZIP/Postal Code
97070
Country
Mexico
Facility Name
Jules Bordet Medical Service, S.C.P. / Khöler & Milstein Research
City
Mérida
State/Province
Yucatán
ZIP/Postal Code
97070
Country
Mexico
Facility Name
Unidad de Atención Médica e Investigación en Salud, S.C.P.
City
Mérida
State/Province
Yucatán
ZIP/Postal Code
97070
Country
Mexico
Facility Name
Promotora Médica Aguascalientes, S.A. de C.V.
City
Aguascalientes
ZIP/Postal Code
20230
Country
Mexico
Facility Name
Oaxaca Site Management Organization, S.C.
City
Oaxaca
ZIP/Postal Code
68000
Country
Mexico
Facility Name
Profesionales Médicos Desarrollados, S.C. (Instituto Veracruzano de Investigación Clínica)
City
Veracruz
ZIP/Postal Code
91855
Country
Mexico

12. IPD Sharing Statement

Plan to Share IPD
No
Citations:
PubMed Identifier
34544278
Citation
Lara-Puente JH, Carreno JM, Sun W, Suarez-Martinez A, Ramirez-Martinez L, Quezada-Monroy F, Paz-De la Rosa G, Vigueras-Moreno R, Singh G, Rojas-Martinez O, Chagoya-Cortes HE, Sarfati-Mizrahi D, Soto-Priante E, Lopez-Macias C, Krammer F, Castro-Peralta F, Palese P, Garcia-Sastre A, Lozano-Dubernard B. Safety and Immunogenicity of a Newcastle Disease Virus Vector-Based SARS-CoV-2 Vaccine Candidate, AVX/COVID-12-HEXAPRO (Patria), in Pigs. mBio. 2021 Oct 26;12(5):e0190821. doi: 10.1128/mBio.01908-21. Epub 2021 Sep 21.
Results Reference
background
PubMed Identifier
32896291
Citation
Logunov DY, Dolzhikova IV, Zubkova OV, Tukhvatullin AI, Shcheblyakov DV, Dzharullaeva AS, Grousova DM, Erokhova AS, Kovyrshina AV, Botikov AG, Izhaeva FM, Popova O, Ozharovskaya TA, Esmagambetov IB, Favorskaya IA, Zrelkin DI, Voronina DV, Shcherbinin DN, Semikhin AS, Simakova YV, Tokarskaya EA, Lubenets NL, Egorova DA, Shmarov MM, Nikitenko NA, Morozova LF, Smolyarchuk EA, Kryukov EV, Babira VF, Borisevich SV, Naroditsky BS, Gintsburg AL. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020 Sep 26;396(10255):887-897. doi: 10.1016/S0140-6736(20)31866-3. Epub 2020 Sep 4. Erratum In: Lancet. 2021 Jan 9;397(10269):98.
Results Reference
background
Citation
Determining Sample Sizes Needed to Detect a Difference between Two Proportions. In: Statistical Methods for Rates and Proportions. John Wiley & Sons, Ltd, 2003: 64-85.
Results Reference
background
Citation
Ritchie H, Ortiz-Ospina E, Beltekian D, et al. Coronavirus Pandemic (COVID-19). Our World in Data 2020; published online March 5. https://ourworldindata.org/covid-cases (accessed Aug 2, 2021).
Results Reference
background
Citation
Exceso de Mortalidad en México - Coronavirus. https://coronavirus.gob.mx/exceso-de-mortalidad-en-mexico/ (accessed Aug 2, 2021).
Results Reference
background
PubMed Identifier
34288409
Citation
Dhillon P, Altmann D, Male V. COVID-19 vaccines: what do we know so far? FEBS J. 2021 Sep;288(17):4996-5009. doi: 10.1111/febs.16094. Epub 2021 Jul 19.
Results Reference
background
PubMed Identifier
34331459
Citation
Zamai L, Rocchi MBL. Hypothesis: Possible influence of antivector immunity and SARS-CoV-2 variants on efficacy of ChAdOx1 nCoV-19 vaccine. Br J Pharmacol. 2022 Jan;179(2):218-226. doi: 10.1111/bph.15620. Epub 2021 Jul 31.
Results Reference
background
PubMed Identifier
34262158
Citation
Barros-Martins J, Hammerschmidt SI, Cossmann A, Odak I, Stankov MV, Morillas Ramos G, Dopfer-Jablonka A, Heidemann A, Ritter C, Friedrichsen M, Schultze-Florey C, Ravens I, Willenzon S, Bubke A, Ristenpart J, Janssen A, Ssebyatika G, Bernhardt G, Munch J, Hoffmann M, Pohlmann S, Krey T, Bosnjak B, Forster R, Behrens GMN. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat Med. 2021 Sep;27(9):1525-1529. doi: 10.1038/s41591-021-01449-9. Epub 2021 Jul 14.
Results Reference
background
PubMed Identifier
33691606
Citation
He Q, Mao Q, An C, Zhang J, Gao F, Bian L, Li C, Liang Z, Xu M, Wang J. Heterologous prime-boost: breaking the protective immune response bottleneck of COVID-19 vaccine candidates. Emerg Microbes Infect. 2021 Dec;10(1):629-637. doi: 10.1080/22221751.2021.1902245.
Results Reference
background
PubMed Identifier
34260850
Citation
Normark J, Vikstrom L, Gwon YD, Persson IL, Edin A, Bjorsell T, Dernstedt A, Christ W, Tevell S, Evander M, Klingstrom J, Ahlm C, Forsell M. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 Vaccination. N Engl J Med. 2021 Sep 9;385(11):1049-1051. doi: 10.1056/NEJMc2110716. Epub 2021 Jul 14. No abstract available.
Results Reference
background
PubMed Identifier
34242571
Citation
Hill JA, Ujjani CS, Greninger AL, Shadman M, Gopal AK. Immunogenicity of a heterologous COVID-19 vaccine after failed vaccination in a lymphoma patient. Cancer Cell. 2021 Aug 9;39(8):1037-1038. doi: 10.1016/j.ccell.2021.06.015. Epub 2021 Jun 26. No abstract available.
Results Reference
background
PubMed Identifier
34258322
Citation
Velasco M, Galan MI, Casas ML, Perez-Fernandez E, Martinez-Ponce D, Gonzalez-Pineiro B, Castilla V, Guijarro C; Alcorcon COVID-19 Working Group. Impact of Previous Coronavirus Disease 2019 on Immune Response After a Single Dose of BNT162b2 Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine. Open Forum Infect Dis. 2021 Jun 4;8(7):ofab299. doi: 10.1093/ofid/ofab299. eCollection 2021 Jul.
Results Reference
background
PubMed Identifier
33956667
Citation
Levi R, Azzolini E, Pozzi C, Ubaldi L, Lagioia M, Mantovani A, Rescigno M. One dose of SARS-CoV-2 vaccine exponentially increases antibodies in individuals who have recovered from symptomatic COVID-19. J Clin Invest. 2021 Jun 15;131(12):e149154. doi: 10.1172/JCI149154.
Results Reference
background
PubMed Identifier
33931567
Citation
Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, Fontana M, Smit A, Sackville-West JE, Cutino-Moguel T, Maini MK, Chain B, Noursadeghi M; UK COVIDsortium Immune Correlates Network; Brooks T, Semper A, Manisty C, Treibel TA, Moon JC; UK COVIDsortium Investigators; Valdes AM, McKnight A, Altmann DM, Boyton R. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021 Apr 30;372(6549):1418-23. doi: 10.1126/science.abh1282. Online ahead of print.
Results Reference
background
Citation
Commissioner O of the. Joint Statement from HHS Public Health and Medical Experts on COVID-19 Booster Shots. FDA. 2021; published online Aug 18. https://www.fda.gov/news-events/press-announcements/joint-statement-hhs-public-health-and-medical-experts-covid-19-booster-shots (accessed Aug 19, 2021).
Results Reference
background
PubMed Identifier
33232870
Citation
Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schafer A, Dinnon KH 3rd, Garcia-Sastre A, Krammer F, Baric RS, Palese P. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine. 2020 Dec;62:103132. doi: 10.1016/j.ebiom.2020.103132. Epub 2020 Nov 21.
Results Reference
background
PubMed Identifier
17535926
Citation
DiNapoli JM, Kotelkin A, Yang L, Elankumaran S, Murphy BR, Samal SK, Collins PL, Bukreyev A. Newcastle disease virus, a host range-restricted virus, as a vaccine vector for intranasal immunization against emerging pathogens. Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9788-93. doi: 10.1073/pnas.0703584104. Epub 2007 May 29.
Results Reference
background
PubMed Identifier
16227250
Citation
Bukreyev A, Huang Z, Yang L, Elankumaran S, St Claire M, Murphy BR, Samal SK, Collins PL. Recombinant newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol. 2005 Nov;79(21):13275-84. doi: 10.1128/JVI.79.21.13275-13284.2005.
Results Reference
background
PubMed Identifier
34351882
Citation
Brown CM, Vostok J, Johnson H, Burns M, Gharpure R, Sami S, Sabo RT, Hall N, Foreman A, Schubert PL, Gallagher GR, Fink T, Madoff LC, Gabriel SB, MacInnis B, Park DJ, Siddle KJ, Harik V, Arvidson D, Brock-Fisher T, Dunn M, Kearns A, Laney AS. Outbreak of SARS-CoV-2 Infections, Including COVID-19 Vaccine Breakthrough Infections, Associated with Large Public Gatherings - Barnstable County, Massachusetts, July 2021. MMWR Morb Mortal Wkly Rep. 2021 Aug 6;70(31):1059-1062. doi: 10.15585/mmwr.mm7031e2.
Results Reference
background
PubMed Identifier
31986264
Citation
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020 Feb 15;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum In: Lancet. 2020 Jan 30;:
Results Reference
background
PubMed Identifier
31986261
Citation
Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, Xing F, Liu J, Yip CC, Poon RW, Tsoi HW, Lo SK, Chan KH, Poon VK, Chan WM, Ip JD, Cai JP, Cheng VC, Chen H, Hui CK, Yuen KY. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet. 2020 Feb 15;395(10223):514-523. doi: 10.1016/S0140-6736(20)30154-9. Epub 2020 Jan 24.
Results Reference
background
PubMed Identifier
31987001
Citation
Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020 Jan 28;9(1):221-236. doi: 10.1080/22221751.2020.1719902. eCollection 2020. Erratum In: Emerg Microbes Infect. 2020 Dec;9(1):540.
Results Reference
background
PubMed Identifier
32015508
Citation
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. A new coronavirus associated with human respiratory disease in China. Nature. 2020 Mar;579(7798):265-269. doi: 10.1038/s41586-020-2008-3. Epub 2020 Feb 3. Erratum In: Nature. 2020 Apr;580(7803):E7.
Results Reference
background
PubMed Identifier
31996437
Citation
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J Virol. 2020 Mar 17;94(7):e00127-20. doi: 10.1128/JVI.00127-20. Print 2020 Mar 17.
Results Reference
background
PubMed Identifier
32142651
Citation
Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020 Mar 5.
Results Reference
background
PubMed Identifier
32979942
Citation
Yao H, Song Y, Chen Y, Wu N, Xu J, Sun C, Zhang J, Weng T, Zhang Z, Wu Z, Cheng L, Shi D, Lu X, Lei J, Crispin M, Shi Y, Li L, Li S. Molecular Architecture of the SARS-CoV-2 Virus. Cell. 2020 Oct 29;183(3):730-738.e13. doi: 10.1016/j.cell.2020.09.018. Epub 2020 Sep 6.
Results Reference
background
PubMed Identifier
32075877
Citation
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507. Epub 2020 Feb 19.
Results Reference
background
PubMed Identifier
32991844
Citation
Piccoli L, Park YJ, Tortorici MA, Czudnochowski N, Walls AC, Beltramello M, Silacci-Fregni C, Pinto D, Rosen LE, Bowen JE, Acton OJ, Jaconi S, Guarino B, Minola A, Zatta F, Sprugasci N, Bassi J, Peter A, De Marco A, Nix JC, Mele F, Jovic S, Rodriguez BF, Gupta SV, Jin F, Piumatti G, Lo Presti G, Pellanda AF, Biggiogero M, Tarkowski M, Pizzuto MS, Cameroni E, Havenar-Daughton C, Smithey M, Hong D, Lepori V, Albanese E, Ceschi A, Bernasconi E, Elzi L, Ferrari P, Garzoni C, Riva A, Snell G, Sallusto F, Fink K, Virgin HW, Lanzavecchia A, Corti D, Veesler D. Mapping Neutralizing and Immunodominant Sites on the SARS-CoV-2 Spike Receptor-Binding Domain by Structure-Guided High-Resolution Serology. Cell. 2020 Nov 12;183(4):1024-1042.e21. doi: 10.1016/j.cell.2020.09.037. Epub 2020 Sep 16.
Results Reference
background
PubMed Identifier
32704169
Citation
Tan CW, Chia WN, Qin X, Liu P, Chen MI, Tiu C, Hu Z, Chen VC, Young BE, Sia WR, Tan YJ, Foo R, Yi Y, Lye DC, Anderson DE, Wang LF. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol. 2020 Sep;38(9):1073-1078. doi: 10.1038/s41587-020-0631-z. Epub 2020 Jul 23.
Results Reference
background
PubMed Identifier
32879307
Citation
Chen X, Pan Z, Yue S, Yu F, Zhang J, Yang Y, Li R, Liu B, Yang X, Gao L, Li Z, Lin Y, Huang Q, Xu L, Tang J, Hu L, Zhao J, Liu P, Zhang G, Chen Y, Deng K, Ye L. Disease severity dictates SARS-CoV-2-specific neutralizing antibody responses in COVID-19. Signal Transduct Target Ther. 2020 Sep 2;5(1):180. doi: 10.1038/s41392-020-00301-9.
Results Reference
background
PubMed Identifier
32618497
Citation
Liu L, To KK, Chan KH, Wong YC, Zhou R, Kwan KY, Fong CH, Chen LL, Choi CY, Lu L, Tsang OT, Leung WS, To WK, Hung IF, Yuen KY, Chen Z. High neutralizing antibody titer in intensive care unit patients with COVID-19. Emerg Microbes Infect. 2020 Dec;9(1):1664-1670. doi: 10.1080/22221751.2020.1791738.
Results Reference
background
PubMed Identifier
32579877
Citation
Choe PG, Kang CK, Suh HJ, Jung J, Kang E, Lee SY, Song KH, Kim HB, Kim NJ, Park WB, Kim ES, Oh MD. Antibody Responses to SARS-CoV-2 at 8 Weeks Postinfection in Asymptomatic Patients. Emerg Infect Dis. 2020 Oct;26(10):2484-2487. doi: 10.3201/eid2610.202211. Epub 2020 Jun 24.
Results Reference
background
PubMed Identifier
32668444
Citation
Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M, Chia WN, Chen MI, Wang LF, Ooi EE, Kalimuddin S, Tambyah PA, Low JG, Tan YJ, Bertoletti A. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Nature. 2020 Aug;584(7821):457-462. doi: 10.1038/s41586-020-2550-z. Epub 2020 Jul 15.
Results Reference
background
PubMed Identifier
34418980
Citation
Dessie ZG, Zewotir T. Mortality-related risk factors of COVID-19: a systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect Dis. 2021 Aug 21;21(1):855. doi: 10.1186/s12879-021-06536-3.
Results Reference
background
PubMed Identifier
34437814
Citation
Wang Y, Perlman S. COVID-19: Inflammatory Profile. Annu Rev Med. 2022 Jan 27;73:65-80. doi: 10.1146/annurev-med-042220-012417. Epub 2021 Aug 26.
Results Reference
background
PubMed Identifier
34396514
Citation
Wagner C, Griesel M, Mikolajewska A, Mueller A, Nothacker M, Kley K, Metzendorf MI, Fischer AL, Kopp M, Stegemann M, Skoetz N, Fichtner F. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD014963. doi: 10.1002/14651858.CD014963.
Results Reference
background
PubMed Identifier
34350582
Citation
Ansems K, Grundeis F, Dahms K, Mikolajewska A, Thieme V, Piechotta V, Metzendorf MI, Stegemann M, Benstoem C, Fichtner F. Remdesivir for the treatment of COVID-19. Cochrane Database Syst Rev. 2021 Aug 5;8(8):CD014962. doi: 10.1002/14651858.CD014962.
Results Reference
background
PubMed Identifier
33734435
Citation
Ghosn L, Chaimani A, Evrenoglou T, Davidson M, Grana C, Schmucker C, Bollig C, Henschke N, Sguassero Y, Nejstgaard CH, Menon S, Nguyen TV, Ferrand G, Kapp P, Riveros C, Avila C, Devane D, Meerpohl JJ, Rada G, Hrobjartsson A, Grasselli G, Tovey D, Ravaud P, Boutron I. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev. 2021 Mar 18;3(3):CD013881. doi: 10.1002/14651858.CD013881.
Results Reference
background
PubMed Identifier
34002089
Citation
Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021 Jul;27(7):1205-1211. doi: 10.1038/s41591-021-01377-8. Epub 2021 May 17.
Results Reference
background
PubMed Identifier
32603501
Citation
Liu A, Li Y, Peng J, Huang Y, Xu D. Antibody responses against SARS-CoV-2 in COVID-19 patients. J Med Virol. 2021 Jan;93(1):144-148. doi: 10.1002/jmv.26241. Epub 2020 Aug 2. No abstract available.
Results Reference
background
PubMed Identifier
33001206
Citation
Perreault J, Tremblay T, Fournier MJ, Drouin M, Beaudoin-Bussieres G, Prevost J, Lewin A, Begin P, Finzi A, Bazin R. Waning of SARS-CoV-2 RBD antibodies in longitudinal convalescent plasma samples within 4 months after symptom onset. Blood. 2020 Nov 26;136(22):2588-2591. doi: 10.1182/blood.2020008367.
Results Reference
background
PubMed Identifier
33382764
Citation
Post N, Eddy D, Huntley C, van Schalkwyk MCI, Shrotri M, Leeman D, Rigby S, Williams SV, Bermingham WH, Kellam P, Maher J, Shields AM, Amirthalingam G, Peacock SJ, Ismail SA. Antibody response to SARS-CoV-2 infection in humans: A systematic review. PLoS One. 2020 Dec 31;15(12):e0244126. doi: 10.1371/journal.pone.0244126. eCollection 2020.
Results Reference
background
PubMed Identifier
34506735
Citation
Juthani PV, Gupta A, Borges KA, Price CC, Lee AI, Won CH, Chun HJ. Hospitalisation among vaccine breakthrough COVID-19 infections. Lancet Infect Dis. 2021 Nov;21(11):1485-1486. doi: 10.1016/S1473-3099(21)00558-2. Epub 2021 Sep 7. No abstract available. Erratum In: Lancet Infect Dis. 2022 Jan;22(1):e1.
Results Reference
background
PubMed Identifier
34181880
Citation
Borobia AM, Carcas AJ, Perez-Olmeda M, Castano L, Bertran MJ, Garcia-Perez J, Campins M, Portoles A, Gonzalez-Perez M, Garcia Morales MT, Arana-Arri E, Aldea M, Diez-Fuertes F, Fuentes I, Ascaso A, Lora D, Imaz-Ayo N, Baron-Mira LE, Agusti A, Perez-Ingidua C, Gomez de la Camara A, Arribas JR, Ochando J, Alcami J, Belda-Iniesta C, Frias J; CombiVacS Study Group. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacS): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet. 2021 Jul 10;398(10295):121-130. doi: 10.1016/S0140-6736(21)01420-3. Epub 2021 Jun 25. Erratum In: Lancet. 2021 Aug 14;398(10300):582.
Results Reference
background
PubMed Identifier
32703906
Citation
Hsieh CL, Goldsmith JA, Schaub JM, DiVenere AM, Kuo HC, Javanmardi K, Le KC, Wrapp D, Lee AG, Liu Y, Chou CW, Byrne PO, Hjorth CK, Johnson NV, Ludes-Meyers J, Nguyen AW, Park J, Wang N, Amengor D, Lavinder JJ, Ippolito GC, Maynard JA, Finkelstein IJ, McLellan JS. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science. 2020 Sep 18;369(6510):1501-1505. doi: 10.1126/science.abd0826. Epub 2020 Jul 23.
Results Reference
background
PubMed Identifier
33296701
Citation
Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, Takehara KK, Eggenberger J, Hemann EA, Waterman HR, Fahning ML, Chen Y, Hale M, Rathe J, Stokes C, Wrenn S, Fiala B, Carter L, Hamerman JA, King NP, Gale M Jr, Campbell DJ, Rawlings DJ, Pepper M. Functional SARS-CoV-2-Specific Immune Memory Persists after Mild COVID-19. Cell. 2021 Jan 7;184(1):169-183.e17. doi: 10.1016/j.cell.2020.11.029. Epub 2020 Nov 23.
Results Reference
background
PubMed Identifier
34260834
Citation
Barouch DH, Stephenson KE, Sadoff J, Yu J, Chang A, Gebre M, McMahan K, Liu J, Chandrashekar A, Patel S, Le Gars M, de Groot AM, Heerwegh D, Struyf F, Douoguih M, van Hoof J, Schuitemaker H. Durable Humoral and Cellular Immune Responses 8 Months after Ad26.COV2.S Vaccination. N Engl J Med. 2021 Sep 2;385(10):951-953. doi: 10.1056/NEJMc2108829. Epub 2021 Jul 14. No abstract available.
Results Reference
background
PubMed Identifier
34525277
Citation
Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Perez Marc G, Polack FP, Zerbini C, Bailey R, Swanson KA, Xu X, Roychoudhury S, Koury K, Bouguermouh S, Kalina WV, Cooper D, Frenck RW Jr, Hammitt LL, Tureci O, Nell H, Schaefer A, Unal S, Yang Q, Liberator P, Tresnan DB, Mather S, Dormitzer PR, Sahin U, Gruber WC, Jansen KU; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine through 6 Months. N Engl J Med. 2021 Nov 4;385(19):1761-1773. doi: 10.1056/NEJMoa2110345. Epub 2021 Sep 15.
Results Reference
background
PubMed Identifier
34289274
Citation
Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, Stowe J, Tessier E, Groves N, Dabrera G, Myers R, Campbell CNJ, Amirthalingam G, Edmunds M, Zambon M, Brown KE, Hopkins S, Chand M, Ramsay M. Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant. N Engl J Med. 2021 Aug 12;385(7):585-594. doi: 10.1056/NEJMoa2108891. Epub 2021 Jul 21. Erratum In: N Engl J Med. 2023 Feb 16;388(7):672.
Results Reference
background
PubMed Identifier
33882219
Citation
Hacisuleyman E, Hale C, Saito Y, Blachere NE, Bergh M, Conlon EG, Schaefer-Babajew DJ, DaSilva J, Muecksch F, Gaebler C, Lifton R, Nussenzweig MC, Hatziioannou T, Bieniasz PD, Darnell RB. Vaccine Breakthrough Infections with SARS-CoV-2 Variants. N Engl J Med. 2021 Jun 10;384(23):2212-2218. doi: 10.1056/NEJMoa2105000. Epub 2021 Apr 21.
Results Reference
background
PubMed Identifier
34320281
Citation
Bergwerk M, Gonen T, Lustig Y, Amit S, Lipsitch M, Cohen C, Mandelboim M, Levin EG, Rubin C, Indenbaum V, Tal I, Zavitan M, Zuckerman N, Bar-Chaim A, Kreiss Y, Regev-Yochay G. Covid-19 Breakthrough Infections in Vaccinated Health Care Workers. N Engl J Med. 2021 Oct 14;385(16):1474-1484. doi: 10.1056/NEJMoa2109072. Epub 2021 Jul 28.
Results Reference
background
PubMed Identifier
34469645
Citation
Keehner J, Horton LE, Binkin NJ, Laurent LC; SEARCH Alliance; Pride D, Longhurst CA, Abeles SR, Torriani FJ. Resurgence of SARS-CoV-2 Infection in a Highly Vaccinated Health System Workforce. N Engl J Med. 2021 Sep 30;385(14):1330-1332. doi: 10.1056/NEJMc2112981. Epub 2021 Sep 1. No abstract available.
Results Reference
background
PubMed Identifier
33972767
Citation
Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C, Rodes-Guirao L. A global database of COVID-19 vaccinations. Nat Hum Behav. 2021 Jul;5(7):947-953. doi: 10.1038/s41562-021-01122-8. Epub 2021 May 10. Erratum In: Nat Hum Behav. 2021 Jun 17;:
Results Reference
background
PubMed Identifier
17648892
Citation
Macpherson LW. Some Observations On The Epizootiology Of NewCastle Disease. Can J Comp Med Vet Sci. 1956 May;20(5):155-68. No abstract available.
Results Reference
background
PubMed Identifier
10935273
Citation
Alexander DJ. Newcastle disease and other avian paramyxoviruses. Rev Sci Tech. 2000 Aug;19(2):443-62. doi: 10.20506/rst.19.2.1231.
Results Reference
background
PubMed Identifier
14924001
Citation
NELSON CB, POMEROY BS, SCHRALL K, PARK WE, LINDEMAN RJ. An outbreak of conjunctivitis due to Newcastle disease virus (NDV) occurring in poultry workers. Am J Public Health Nations Health. 1952 Jun;42(6):672-8. doi: 10.2105/ajph.42.6.672. No abstract available.
Results Reference
background
PubMed Identifier
27384578
Citation
Kim SH, Samal SK. Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines. Viruses. 2016 Jul 4;8(7):183. doi: 10.3390/v8070183.
Results Reference
background
PubMed Identifier
33348607
Citation
Sun W, McCroskery S, Liu WC, Leist SR, Liu Y, Albrecht RA, Slamanig S, Oliva J, Amanat F, Schafer A, Dinnon KH 3rd, Innis BL, Garcia-Sastre A, Krammer F, Baric RS, Palese P. A Newcastle Disease Virus (NDV) Expressing a Membrane-Anchored Spike as a Cost-Effective Inactivated SARS-CoV-2 Vaccine. Vaccines (Basel). 2020 Dec 17;8(4):771. doi: 10.3390/vaccines8040771.
Results Reference
background
PubMed Identifier
7249508
Citation
Naranjo CA, Busto U, Sellers EM, Sandor P, Ruiz I, Roberts EA, Janecek E, Domecq C, Greenblatt DJ. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther. 1981 Aug;30(2):239-45. doi: 10.1038/clpt.1981.154. No abstract available.
Results Reference
background
Citation
1. Ponce de León, S. et. al. (2022) Safety and immunogenicity of a live recombinant Newcastle disease virus-based COVID-19 vaccine (Patria) administered via the intramuscular or intranasal route: Interim results of a non-randomized open label phase I trial in Mexico. Pre-Print. https://www.medrxiv.org/content/10.1101/2022.02.08.22270676v1 doi: https://doi.org/10.1101/2022.02.08.22270676
Results Reference
result

Learn more about this trial

Phase II/III Study of the AVX/COVID-12 Vaccine Against COVID-19 Applied as a Booster.

We'll reach out to this number within 24 hrs