search

Active clinical trials for "Brain Neoplasms"

Results 361-370 of 1541

Prospective Exploratory Study of FAPi PET/CT With Histopathology Validation in Patients With Various...

Bladder CarcinomaCervical Carcinoma14 more

This exploratory study investigates how an imaging technique called 68Ga-FAPi-46 PET/CT can determine where and to which degree the FAPI tracer (68Ga-FAPi-46) accumulates in normal and cancer tissues in patients with cancer. Because some cancers take up 68Ga-FAPi-46 it can be seen with PET. FAP stands for Fibroblast Activation Protein. FAP is produced by cells that surround tumors (cancer associated fibroblasts). The function of FAP is not well understood but imaging studies have shown that FAP can be detected with FAPI PET/CT. Imaging FAP with FAPI PET/CT may in the future provide additional information about various cancers.

Recruiting23 enrollment criteria

Glutamate Excitotoxicity in Brain Metastases From Lung, Breast and Melanoma Treated With Stereotactic...

Brain MetastasesAdult

Brain metastases (BM) represents a devastating clinical reality, carrying an estimated survival time of less than one year. Number of reasons, including complicated tumor biology and difficulties in modeling metastatic cancer in brain microenvironment, do hinder research on this topic. BM are indeed the most frequent neoplasm in the central nervous system (CNS) and is estimated that up to 14% of all newly diagnosed cancers will metastasize to the brain. A number of reasons, including complicated tumor biology and difficulties in modeling metastatic cancer in brain microenvironment, do hinder research on this topic. Present knowledge regarding alterations in Glutamate (Glu) homeostasis and BM is poor. This study aims at investigating Glu balance in BM patients and providing supporting evidence to the identification of new putative biomarkers to be used as potential therapeutic targets.

Recruiting10 enrollment criteria

Metabolic Characterization of Space Occupying Lesions of the Brain

Brain TumorGlioma1 more

High field MR-technologies are expected to boost metabolic spectroscopic imaging (MRSI), but also CEST-MRI. This is due to the fact that increased SNR is available which can be used to increase the spatial resolution of all sequences, or reduction of measurement times. Recent findings has shown that MRSI can be used to evaluate the isocitrate dehydrogenase (IDH) status of gliomas, a brain tumor type which is most often diagnosed in humans. Patients with IDH-mutated gliomas have a much longer survival time that IDH-wildtype. In IDH-mutated gliomas the substance 2-hydroxy-glutarate (2HG) is found, whereas in IDH-wildtype gliomas it is not. The underlying trial aims to measure 2HG directly with different MRSI sequences at 3 Tesla (3T) and 7 Tesla (7T) magnetic field strength. Apart from MRSI-techniques for IDH-typing it has been shown that CEST-imaging can also be performed to determine the IDH-status of gliomas. A total of 75 patients and 50 healthy controls will be examined in this study to evaluate the most accurate method for pre-operative IDH-status determination.

Recruiting10 enrollment criteria

Use of Non-invasive Optical Analysis in Neurosurgery

Brain TumourGlioma3 more

The present study aims to investigate the potential application of multispectral analysis, hyperspectral imaging, and fluorescence during neuro-oncological procedures, specifically during brain tumour debulking / resection. These optics techniques are entirely non-invasive and consist in camera with a filter to be linked to the standard microsurgical and endoscopic instruments used in theatre. The research procedure consists of images acquisition and data processing, with virtually no additional invasive procedures to be performed on patients.

Recruiting4 enrollment criteria

The MOMENTUM Study: The Multiple Outcome Evaluation of Radiation Therapy Using the MR-Linac Study...

OncologyBreast Cancer36 more

The Multi-OutcoMe EvaluatioN of radiation Therapy Using the Unity MR-Linac Study (MOMENTUM) is a multi-institutional, international registry facilitating evidenced based implementation of the Unity MR-Linac technology and further technical development of the MR-Linac system with the ultimate purpose to improve patients' survival, local, and regional tumor control and quality of life.

Recruiting5 enrollment criteria

Intra-Tumoral Injections of Natural Killer Cells for Recurrent Malignant Brain Tumors

Pediatric Brain TumorRecurrent Pediatric Brain Tumor1 more

This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.

Not yet recruiting40 enrollment criteria

GD2-CAR T Cells for Pediatric Brain Tumours

Brain TumorPediatric7 more

The purpose of this study is to test the safety and efficacy of iC9-GD2-CAR T-cells, a third generation (4.1BB-CD28) CAR T cell treatment targeting GD2 in paediatric or young adult patients affected by relapsed/refractory malignant central nervous system (CNS) tumors. In order to improve the safety of the approach, the suicide gene inducible Caspase 9 (iC9) has been included.

Not yet recruiting26 enrollment criteria

Pyrotinib Combined With Capecitabine in HER-2 Positive Advanced Breast Cancer and Brain Metastases...

Breast Cancer

This study aims to describe the different treatment time, treatment mode and clinical outcomes of pyrotinib maleate tablets combined with capecitabine in the treatment of patients with HER-2 positive advanced breast cancer with brain metastases.

Recruiting10 enrollment criteria

JDQ443 for KRAS G12C NSCLC Brain Metastases

Non Small Cell Lung Cancer MetastaticBrain Metastases2 more

The goal of this phase II clinical trial is to evaluate the intracranial efficacy of JDQ443, a KRAS G12C inhibitor in patients with KRAS G12C+ NSCLC and brain metastases (cohort A: asymptomatic, untreated brain metastases, cohort B: asymptomatic, treated brain metastases). The main question it aims to answer is to evaluate the intracranial efficacy, according to RANO-BM criteria, in patients with asymptomatic and untreated brain metastases. Participants will receive JDQ443 200 mg BID until unacceptable toxicity or disease progression.

Not yet recruiting56 enrollment criteria

A Phase II Study of T-DXd Plus SRT in HER2-positive Breast Cancer Brain Metastases

Breast CancerBrain Metastases1 more

This research study will evaluate the efficacy and safety of stereotactic radiotherapy (SRT) combined with Trastuzumab-Deruxtecan (T-DXd; DS-8201a) in HER2-positive Breast Cancer Patients with newly diagnosed or progressing Brain Metastases.

Not yet recruiting22 enrollment criteria
1...363738...155

Need Help? Contact our team!


We'll reach out to this number within 24 hrs