search

Active clinical trials for "Anemia, Diamond-Blackfan"

Results 11-20 of 44

Investigation of the Genetics of Hematologic Diseases

Bone Marrow Failure SyndromesErythrocyte Disorder11 more

The purpose of this study is to collect and store samples and health information for current and future research to learn more about the causes and treatment of blood diseases. This is not a therapeutic or diagnostic protocol for clinical purposes. Blood, bone marrow, hair follicles, nail clippings, urine, saliva and buccal swabs, left over tissue, as well as health information will be used to study and learn about blood diseases by using genetic and/or genomic research. In general, genetic research studies specific genes of an individual; genomic research studies the complete genetic makeup of an individual. It is not known why many people have blood diseases, because not all genes causing these diseases have been found. It is also not known why some people with the same disease are sicker than others, but this may be related to their genes. By studying the genomes in individuals with blood diseases and their family members, the investigators hope to learn more about how diseases develop and respond to treatment which may provide new and better ways to diagnose and treat blood diseases. Primary Objective: Establish a repository of DNA and cryopreserved blood cells with linked clinical information from individuals with non-malignant blood diseases and biologically-related family members, in conjunction with the existing St. Jude biorepository, to conduct genomic and functional studies to facilitate secondary objectives. Secondary Objectives: Utilize next generation genomic sequencing technologies to Identify novel genetic alternations that associate with disease status in individuals with unexplained non-malignant blood diseases. Use genomic approaches to identify modifier genes in individuals with defined monogenic non-malignant blood diseases. Use genomic approaches to identify genetic variants associated with treatment outcomes and toxicities for individuals with non-malignant blood disease. Use single cell genomics, transcriptomics, proteomics and metabolomics to investigate biomarkers for disease progression, sickle cell disease (SCD) pain events and the long-term cellular and molecular effects of hydroxyurea therapy. Using longitudinal assessment of clinical and genetic, study the long-term outcomes and evolving genetic changes in non-malignant blood diseases. Exploratory Objectives Determine whether analysis of select patient-derived bone marrow hematopoietic progenitor/stem (HSPC) cells or induced pluripotent stem (iPS) cells can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms. Determine whether analysis of circulating mature blood cells and their progenitors from selected patients with suspected or proven genetic hematological disorders can recapitulate genotype-phenotype relationships and provide insight into disease mechanisms.

Recruiting3 enrollment criteria

Cancer in Inherited Bone Marrow Failure Syndromes

Diamond Blackfan AnemiaDyskeratosis Congenita4 more

Background: A prospective cohort of Inherited Bone Marrow Failure Syndrome (IBMFS) will provide new information regarding cancer rates and types in these disorders. Pathogenic variant(s) in IBMFS genes are relevant to carcinogenesis in sporadic cancers. Patients with IBMFS who develop cancer differ in their genetic and/or environmental features from patients with IBMFS who do not develop cancer. These cancer-prone families are well suited for cancer screening and prevention trials targeting those at increased genetic risk of cancer. Carriers of IBMFS pathogenic variant(s) are at increased risk of cancer. The prototype disorder is Fanconi's Anemia (FA); other IBMFS will also be studied. Objectives: To determine the types and incidence of specific cancers in patients with an IBMFS. To investigate the relevance of IBMFS pathogenic variant(s) in the carcinogenesis pathway of the sporadic counterparts of IBMFS-associated cancers. To identify risk factors for IBMFS-related cancers in addition to the primary germline pathogenic variant(s). To determine the risk of cancer in IBMFS carriers. Eligibility: North American families with a proband with an IBMFS. IBMFS suspected by phenotype, confirmed by pathogenic variant(s) in an IBMFS gene, or by clinical diagnostic test. Fanconi's anemia: birth defects, marrow failure, early onset malignancy; positive chromosome breakage result. Diamond-Blackfan anemia: pure red cell aplasia; elevated red cell adenosine deaminase. Dyskeratosis congenita: dysplastic nails, lacey pigmentation, leukoplakia; marrow failure. Shwachman-Diamond Syndrome: malabsorption; neutropenia. Amegakaryocytic thrombocytopenia: early onset thrombocytopenia. Thrombocytopenia absent radii: absent radii; early onset thrombocytopenia. Severe Congenital Neutropenia: neutropenia, pyogenic infections, bone marrow maturation arrest. Pearson's Syndrome: malabsorption, neutropenia, marrow failure, metabolic acidosis; ringed sideroblasts. Other bone marrow failure syndromes: e.g. Revesz Syndrome, WT, IVIC, radio-ulnar synostosis, ataxia-pancytopenia. First degree relatives of IBMFS-affected subjects as defined here, i.e. siblings (half or full), biologic parents, and children. Grandparents of IBMFS-affected subjects. Patients in the general population with sporadic tumors of the types seen in the IBMFS (head and neck, gastrointestinal, and anogenital cancer), with none of the usual risk factors (e.g. smoking, drinking, HPV). Design: Natural history study, with questionnaires, clinical evaluations, clinical and research laboratory test, review of medical records, cancer surveillance. Primary endpoints are all cancers, solid tumors, and cancers specific to each type of IBMFS. Secondary endpoints are markers of pre-malignant conditions, such as leukoplakia, serum or tissue evidence of carcinogenic viruses, and bone marrow morphologic myelodyplastic syndrome or cytogenetic clones.

Recruiting25 enrollment criteria

Diamond Blackfan Anemia Registry (DBAR)

AnemiaBlood Disease

The purpose of this study is to maintain a comprehensive registry of patients with the rare inherited bone marrow failure syndrome Diamond Blackfan anemia (DBA).

Recruiting8 enrollment criteria

Familial Investigations of Childhood Cancer Predisposition

Acute LeukemiaAdenomatous Polyposis44 more

NOTE: This is a research study and is not meant to be a substitute for clinical genetic testing. Families may never receive results from the study or may receive results many years from the time they enroll. If you are interested in clinical testing please consider seeing a local genetic counselor or other genetics professional. If you have already had clinical genetic testing and meet eligibility criteria for this study as shown in the Eligibility Section, you may enroll regardless of the results of your clinical genetic testing. While it is well recognized that hereditary factors contribute to the development of a subset of human cancers, the cause for many cancers remains unknown. The application of next generation sequencing (NGS) technologies has expanded knowledge in the field of hereditary cancer predisposition. Currently, more than 100 cancer predisposing genes have been identified, and it is now estimated that approximately 10% of all cancer patients have an underlying genetic predisposition. The purpose of this protocol is to identify novel cancer predisposing genes and/or genetic variants. For this study, the investigators will establish a Data Registry linked to a Repository of biological samples. Health information, blood samples and occasionally leftover tumor samples will be collected from individuals with familial cancer. The investigators will use NGS approaches to find changes in genes that may be important in the development of familial cancer. The information gained from this study may provide new and better ways to diagnose and care for people with hereditary cancer. PRIMARY OBJECTIVE: Establish a registry of families with clustering of cancer in which clinical data are linked to a repository of cryopreserved blood cells, germline DNA, and tumor tissues from the proband and other family members. SECONDARY OBJECTIVE: Identify novel cancer predisposing genes and/or genetic variants in families with clustering of cancer for which the underlying genetic basis is unknown.

Recruiting13 enrollment criteria

Related Hematopoietic Stem Cell Transplantation (HSCT) for Genetic Diseases of Blood Cells

Stem Cell TransplantationBone Marrow Transplantation11 more

Many genetic diseases of lymphohematopoietic cells (such as sickle cell anemia, thalassemia, Diamond-Blackfan anemia, Combined Immune Deficiency (CID), Wiskott-Aldrich syndrome, chronic granulomatous disease, X-linked lymphoproliferative disease, and metabolic diseases affecting hematopoiesis) are sublethal diseases caused by mutations that adversely affect the development or function of different types of blood cells. Although pathophysiologically diverse, these genetic diseases share a similar clinical course of significant progressive morbidity, overall poor quality of life, and ultimate death from complications of the disease or its palliative treatment. Supportive care for these diseases includes chronic transfusion, iron chelation, and surgery (splenectomy or cholecystectomy) for the hemoglobinopathies; prophylactic antibiotics, intravenous immunoglobulin, and immunomodulator therapies for the immune deficiencies; and enzyme replacement injections and dietary restriction for some of the metabolic diseases. The suboptimal results of such supportive care measures have led to efforts to implement more aggressive therapeutic interventions to cure these lymphohematopoietic diseases. The most logical strategies for cure of these diseases have been either replacement of the patient's own hematopoietic stem cells (HSC) with those derived from a normal donor allogeneic bone marrow transplant (BMT) or hematopoietic stem cell transplant (HSCT), or to genetically modify the patient's own stem cells to replace the defective gene (gene therapy).

Terminated12 enrollment criteria

The Use of Trifluoperazine in Transfusion Dependent DBA

Diamond Blackfan AnemiaPure Red Cell Aplasia

Diamond Blackfan anemia (DBA) is a rare inherited pure red cell aplasia. The two main non-stem cell transplant therapeutic options are corticosteroids and red blood cell (RBC) transfusions. About 80% of DBA patients initially respond to corticosteroids, however, half of the patients cannot continue due to side effects or loss of response. These patients are then typically dependent on RBC transfusions throughout life. Each of these treatments is fraught with many side effects and significant morbidity and mortality are potential consequences of hematopoietic stem cell transplantation (SCT). The majority of individuals with DBA have mutations in genes encoding structural proteins of the small or large ribosomal subunit leading to deficiency of the particular ribosomal protein (RP). Using the RP deficient zebrafish embryo model, high throughput drug screens have demonstrated a strong hematologic response to several calmodulin inhibitors. One of these chemicals is trifluoperazine (TFP). TFP treatment of a mouse model of DBA also increased the red blood cell count and the hemoglobin (Hb) levels in the mice. TFP is a FDA-approved typical antipsychotic agent that has been available since 1958 with a well-known safety profile. In the United States, TFP is approved for the short-term treatment of generalized non-psychotic anxiety; treatment or prevention of nausea and vomiting of various causes; and, management of psychotic disorders. This study aims to determine the safety/tolerability of TFP in adult subjects with DBA. TFP's expected dose-limiting toxicity is primarily neurologic (extrapyramidal) when used long-term at typical anti-psychotic doses (range 10-50 mg daily). Non-neurologic adverse effects in subjects with DBA have not been investigated. We will perform a dose escalation study to define the safety and tolerability of lower doses of this agent in subjects with DBA. To mitigate the potential risks of administering TFP to this new population, we will (1) start dosing at dose levels well below those prescribed for psychosis, (2) dose escalate to a maximum of 10 mg daily (the lowest dose typically prescribed for psychosis), and (3) perform weekly safety monitoring. Given the positive signal in DBA animal models and the 60-year clinical experience with higher doses of TFP, this drug warrants a trial in humans to assess tolerability in DBA.

Terminated20 enrollment criteria

Long Term Follow-up Study for Patients Enrolled on the BP-004 Clinical Study

Acute Lymphoblastic LeukemiaLeukemia15 more

This is a long-term follow up study evaluating the safety of BPX-501 T cells (rivogenlecleucel) and infused in pediatric patients previously enrolled on the BP-004 study.

Terminated4 enrollment criteria

Safety and Efficacy Study of Sotatercept in Adults With Transfusion Dependent Diamond Blackfan Anemia...

Diamond Blackfan Anemia

The purpose of this study is to determine the safety and dosing of drug Sotatercept, as a subcutaneous injection, to stimulate production of red blood cell production. To be given every 28 days for up to four doses.

Terminated16 enrollment criteria

Alefacept and Allogeneic Hematopoietic Stem Cell Transplantation

ThalassemiaSickle Cell Disease11 more

Allogeneic blood and marrow transplantation remains the only viable cure for children who suffer from many serious non-malignant hematological diseases. Transplantation, however, carries a high risk of fatal complications. Much of the risk stems from the use of high dose radiation and chemotherapy for conditioning, the treatment administered just prior to transplant that eliminates the patients' marrow and immune system, effectively preventing rejection of the donors' cells. Attempts to make blood and marrow transplantation safer for children with non-malignant diseases by using lower doses of radiation and chemotherapy have largely failed because of a high rate of graft rejection. In many such cases, it is likely that the graft is rejected because the recipient is sensitized to proteins on donor cells, including bone marrow cells, by blood transfusions. The formation of memory immune cells is a hallmark of sensitization, and these memory cells are relatively insensitive to chemotherapy and radiation. Alefacept, a drug used to treat psoriasis, on the other hand, selectively depletes these cells. The investigators are conducting a pilot study to begin to determine whether incorporating alefacept into a low dose conditioning regimen can effectively mitigate sensitization and, thereby, prevent rejection of allogeneic blood and marrow transplants for multiply transfused children with non-malignant hematological diseases.

Terminated23 enrollment criteria

Donor Umbilical Cord Blood Transplant in Treating Patients With Hematologic Cancer

Chronic Myeloproliferative DisordersDiamond-blackfan Anemia7 more

RATIONALE: Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from a related or unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow to make stem cells, red blood cells, white blood cells, and platelets. PURPOSE: This clinical trial is studying how well donor umbilical cord blood transplant works in treating patients with hematologic cancer.

Terminated26 enrollment criteria
123...5

Need Help? Contact our team!


We'll reach out to this number within 24 hrs