search

Active clinical trials for "Anemia, Diamond-Blackfan"

Results 21-30 of 44

Safety Study of Gene Modified Donor T-cells Following TCRαβ+ Depleted Stem Cell Transplant

Acute Lymphoblastic LeukemiaLeukemia16 more

This study will evaluate pediatric patients with malignant or non-malignant blood cell disorders who are having a blood stem cell transplant depleted of T cell receptor (TCR) alfa and beta cells that comes from a partially matched family donor. The study will assess whether immune cells, called T cells, from the family donor, that are specially grown in the laboratory and given back to the patient along with the stem cell transplant can help the immune system recover faster after transplant. As a safety measure these T cells have been programmed with a self-destruct switch so that they can be destroyed if they start to react against tissues (Graft versus host disease).

Terminated20 enrollment criteria

Pilot Lenalidomide in Adult Diamond-Blackfan Anemia Patients w/ RBC Transfusion-Dependent Anemia...

AnemiaLeukemia2 more

This is a single-center, single arm, open-label study of oral lenalidomide monotherapy administered to red blood cell (RBC) transfusion dependent adult subjects with Diamond-Blackfan Anemia (DBA). Primary Objective: To evaluate the erythroid response rate as measured by rate of red blood cell transfusion independence [MDS International Working Group (IWG) 2000 Criteria will be applied]. Secondary Objective: 1)To evaluate the tolerability and safety profile of lenalidomide in patients with DBA and other inherited marrow failure syndromes 2) To correlate response to lenalidomide with biologic surrogates of DBA including ribosomal protein mutation status, ex vivo erythroid colony growth, and microarray gene expression

Terminated27 enrollment criteria

A Study to Determine Whether Therapy With Daclizumab Will Benefit Patients With Bone Marrow Failure...

Aplastic AnemiaPure Red Cell Aplasia1 more

Participants in this study are suffering from rare and serious blood disorders. In aplastic anemia, the bone marrow stops producing red blood cells, platelets, and white blood cells. In pure red cell aplasia, the bone marrow stops producing red cells, and in amegakaryocytic thrombocytopenic purpura, the bone marrow stops producing platelets. Current treatment approaches for these disorders include bone marrow transplant and/or immunosuppression. However, bone marrow transplant is not always possible, and immunosuppression has serious side effects. This study will investigate whether daclizumab can be used to treat these disorders. Daclizumab is a genetically engineered human antibody that blocks the interleukin-2 receptor on immune cells. It has been used successfully in many transplant patients to reduce the rate of organ rejection. Participants will undergo a complete history and physical examination. A bone marrow aspiration and biopsy will be performed to confirm the type of bone marrow failure. About 5 tablespoons of blood will be drawn for baseline tests and research purposes. Daclizumab will be administered every 2 weeks by vein in a 30-minute infusion. The first dose will be given at NIH and the next four may be given at NIH or by the participant's primary hematologist. The treatment will last 8 weeks. Participants must also see their referring physician or NIH physicians every 2 weeks for blood counts. In the fourth and eighth weeks of the study and at the 3-month follow-up visit, 2 tablespoons of blood will be drawn at NIH. At the 1-month follow-up visit to NIH, 5 tablespoons of blood will be drawn and another bone marrow aspiration and biopsy performed. Risks from bone marrow aspiration and biopsy and blood draws include discomfort. Daclizumab is usually well-tolerated; however, it may weaken immunity against certain bacteria and viruses.

Terminated24 enrollment criteria

Medical Treatment for Diamond Blackfan Anemia

Fanconi's AnemiaHematologic Disease

Diamond Blackfan anemia (DBA) is a condition in which the bone marrow is underdeveloped. DBA is considered a congenital disease, meaning patients are born with it. In DBA there is a lack of cells that give rise to red blood cells. The other elements produced in the bone marrow, such as white blood cells and platelets, are normal. Standard treatments used for this disorder such as steroids and bone marrow transplants are associated with failure, relapse, side-effects, increased morbidity, and even death. Two drugs, antithymocyte globulin (ATG) and cyclosporin have been used to treat DBA, but have only provided occasional responses. No study has ever combined these two drugs for the treatment of DBA. This study is designed to explore the combined use of ATG and cyclosporine as a rational approach to the treatment of DBA.

Completed15 enrollment criteria

Allo-HCT MUD for Non-malignant Red Blood Cell (RBC) Disorders: Sickle Cell, Thal, and DBA: Reduced...

Sickle Cell DiseaseThalassemia1 more

The main purpose of this project is to cure patients with high risk Sickle cell disease and other red cell disorders including thalassemia and diamond-blackfan anemia by bone marrow transplantation. The patients enrolled in this study will be those who lack matched sibling donors and therefore have no other option but to undergo bone marrow transplantation using matched but unrelated bone marrow or umbilical cord blood from the national marrow donor program registry. Since bone marrow transplantation for these disorders using matched unrelated donors has two major problems i.e. engraftment, or , the process of new marrow being accepted and allowed to grow in the the patient; and graft-versus-host disease, or the process where the new marrow "rejects" the host or the patient, this study has been devised with methods to overcome these two problems and thus make transplantation from unrelated donors both successful in terms of engraftment and safe in terms of side effects, both acute and long term. In order to accomplish these two goals, two important things will be done. Firstly, patients will get three medicines which are considered reduced intensity because they are not known to cause the serious organ damage seen with conventional chemotherapy. These medicines, however, do cause intense immune suppression so these can cause increased infections. Secondly, in addition to transplantation of bone marrow from unrelated donors, patients will also transplanted with mesenchymal stromal cells derived from the bone marrow of their parents. Mesenchymal stromal cells are adult stem cells that are normally found in the bone marrow and are thought to create the right background for the blood cells to grow. They have been shown in many animal and human studies to improve engraftment. In addition, they have a special property by which they prevent and are now even considered to treat graft versus host disease. Therefore, by using a reduced intensity chemotherapy regimen before transplant and transplanting mesenchymal stromal cells, we hope to improve engraftment while at the same time decrease the potential for severe side effects associated with a conventional transplant which uses extremely high doses of chemotherapy.

Completed22 enrollment criteria

Busulfan, Antithymocyte Globulin, and Fludarabine Followed By a Donor Stem Cell Transplant in Treating...

Congenital Amegakaryocytic ThrombocytopeniaDiamond-blackfan Anemia4 more

RATIONALE: Drugs used in chemotherapy, such as busulfan and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. A donor peripheral blood, bone marrow , or umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of busulfan, antithymocyte globulin, and fludarabine when given together with a donor stem cell transplant in treating young patients with blood disorders, bone marrow disorders, chronic myelogenous leukemia in first chronic phase, or acute myeloid leukemia in first remission.

Completed38 enrollment criteria

Rituximab to Treat Moderate Aplastic Anemia, Pure Red Cell Aplasia, or Diamond Blackfan Anemia

AnemiaAplastic4 more

This study will test whether the immune-suppressing drug rituximab can increase blood counts and reduce the need for transfusions in patients with moderate aplastic anemia, pure red cell aplasia, or Diamond Blackfan anemia. These are rare and serious blood disorders in which the immune system turns against bone marrow cells, causing the bone marrow to stop producing red blood cells in patients with pure red cell aplasia and Diamond Blackfan anemia, and red blood cells, white blood cells and platelets in patients with aplastic anemia. Rituximab is a laboratory-made monoclonal antibody that recognizes and destroys white blood cells called lymphocytes that are responsible for destroying bone marrow cells in these diseases. The drug is currently approved by the Food and Drug Administration for treating patients with B-cell non-Hodgkin lymphoma, a disease of white blood cells.

Completed34 enrollment criteria

Conditioning Regimen for Allogeneic Hematopoietic Stem-Cell Transplantation

Bone Marrow Failure SyndromeThalassemia14 more

In this study, the investigators test 2 dose levels of thiotepa (5 mg/kg and 10 mg/kg) added to the backbone of targeted reduced dose IV busulfan, fludarabine and rabbit anti-thymocyte globulin (rATG) to determine the minimum effective dose required for reliable engraftment for subjects undergoing hematopoietic stem cell transplantation for non-malignant disease.

Completed37 enrollment criteria

Magnetic Resonance Imaging (MRI) Assessments of the Heart and Liver Iron Load in Patients With Transfusion...

HemoglobinopathiesMyelodysplastic Syndromes5 more

This study will evaluate the change in cardiac iron load over a 53 week period measured by MRI in 2 cohorts of patients

Completed8 enrollment criteria

Study of Deferasirox in Iron Overload From Beta-thalassemia Unable to be Treated With Deferoxamine...

Beta-thalassemiaMyelodysplastic Syndromes5 more

The purpose of this study is to determine the effects of the oral iron chelator Deferasirox on liver iron content after one year of treatment in patients with iron overload from repeated blood transfusions. Beta-thalassemia patients unable to be treated with deferoxamine or patients with rare chronic anemias such as Myelodysplastic Syndrome, Fanconi's Syndrome, Blackfan-Diamond Syndrome, and Pure Red Blood Cell Anemia are eligible for this study. Liver iron content will be measured by liver biopsy at the beginning of the study and after one year of treatment. However, those patients living in the San Francisco/Oakland area may have a SQUID in place of the liver biopsy if the biopsy is not medically possible for them. The SQUID is a non-invasive magnetic means to measure liver iron content.

Completed25 enrollment criteria

Need Help? Contact our team!


We'll reach out to this number within 24 hrs