search

Active clinical trials for "Dystonic Disorders"

Results 181-190 of 247

Contribution of the Cerebellum In Sensory-motor Adaptation Via Gamma Oscillations: the Case of Dystonia...

Primary Dystonia

Dystonia, a disabling disease with uncontrolled movement disorders was considered to be a manifestation of basal ganglia dysfunction, yet there is accumulating evidence from animal and human experiments that the cerebellum plays a prominent role in the pathophysiology of dystonia. Our recent results suggest a deficient cerebellar sensory encoding in dystonia, resulting in a decoupling of the motor component from the afferent information flow resulting from changes in the environment. An overall loss of gabaergic-mediated inhibition is at the forefront in dynamic changes in neural circuitry described in dystonia. In the mature brain gabaergic control the generation of temporal synchronies and oscillations in the glutamatergic neurons. Taken these all together with the results of a pilot experiment, the investigators hypothesize that deficient synchronies in the fast gamma range are one of the key mechanisms leading to abnormal communication inside the cerebello-cortical network in dystonia. The investigators aim first to demonstrate it by means of MEG (Magneto encepholography) recordings allowing to reconstruct the spatio-temporal dynamics of gamma oscillations in the nodes of the cerebello-cortical network. The investigators then aim to re-establish (if lost) or boost (if decreased) the defective synchronies by applying to the cerebellum at high gamma frequency a non invasive transcranial alternative current stimulation.

Completed7 enrollment criteria

The Effects of Repetitive Paired Associative Stimulation in Dystonia

Dystonia

Background: - People with dystonia have serious muscle contractions that cause abnormal movements or postures. This significantly affects their daily lives. The common type is called organic. The other type is psychogenic. People with this type have typical symptoms plus some psychological effects. Researchers will look at how rapid transcranial magnetic stimulation (rTMS) of the brain combined with stimulation of a nerve affects the ability to detect sensations. They will compare the responses of people with different types of dystonia. They will also compare the responses of people with dystonia to responses of people without it. This study may help us learn more about the nature of different types of dystonia. Objectives: - To see whether TMS combined with nerve stimulation affects the brain differently in people with different types of dystonia and those without dystonia. Eligibility: Individuals at least 18 years old, who are right-handed and have dystonia. Healthy volunteers at least 18 years old. Design: Participants will have two clinical visits. Each visit will be a few hours long. They can be done on the same day. Participants will be screened with a medical history and physical exam. Participants will take several sensory tests. For these tests, electrodes will be placed on their skin. The participants will feel small electric shocks during some of the tests. Participants will undergo TMS. For 2 minutes, quick electrical currents will pass through a wire coil placed on their head. As this happens, researchers will ask the participants to move certain muscles.

Completed14 enrollment criteria

Chronic Effects of DBS in Parkinson's Disease and Dystonia

Parkinson's DiseaseIsolated Dystonia

The purpose of this study is to use an investigational device to record brain activity for 12-24 months following surgical implantation of deep brain stimulation (DBS) systems. The goal of the study is better understanding of brain activity in movement disorders and how they relate to DBS, not to bring new devices to market.

Completed24 enrollment criteria

Long-Term Motor Learning in Focal Hand Dystonia

Focal Hand Dystonia

This study will examine the effects of long-term practice of repeated finger movements in people with focal hand dystonia, as compared with healthy volunteers. Patients with dystonia have muscle spasms that cause abnormal postures while trying to perform a movement. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Right-handed healthy volunteers and patients with focal hand dystonia of the right hand 18 years of age and older may be eligible for this study. Candidates are screened with a medical history and neurological and physical examination. Participants are trained daily for 11 days (excluding weekends) at the NIH and are asked to continue with daily 15 minutes of practice over a 12-week period to perform sequential finger movement task (key presses) with their left hand. They practice initially at NIH and then at home. At each clinic visit, their learning of the motor skill is assessed by recording their performance of 20 consecutive trials of the eight sequences (a total of 160 key presses) in the task. To evaluate long-term motor learning of the sequential movements, participants are asked to do different task tests at Day 2, Week 4 and Week 12. Brain wave activity, and brain excitability are also measured during these days. In one task, they see a random series of letters on a screen during the sequential finger movements and are asked to say the number of times they see a specific letter. In another task, they are asked to focus on each specific movement while performing the sequential finger movements. During each visit, they are questioned and evaluated for the development of any abnormal movements that may be suggestive of early dystonia. All participants have an electroencephalogram (EEG) and transcranial magnetic stimulation (TMS) at Day 1, and Day 2 and at Week 4 and Week 12 to evaluate brain activity. For the EEG, electrodes are placed on the subject's scalp and the electrical activity of the brain is recorded while the subject performs the sequence of finger movements. For TMS, a wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. The effect of TMS on the muscles is detected with small electrodes taped to the skin of the subject's arms or legs. ...

Completed22 enrollment criteria

Factors Influencing Response to One BoNT-A Injection Cycle in Subjects Suffering From Idiopathic...

Idiopathic Cervical Dystonia

A post marketing, international, multicenter, observational, prospective, longitudinal study. The purpose of the study is to describe cervical dystonia sub-types with their injection protocols and response to BoNT-A.

Completed7 enrollment criteria

Novel Stimulation Patterns for the Treatment of Dystonia

DystoniaCervical Dystonia

Deep brain stimulation (DBS) is an effective surgical therapy for select Dystonia patients who are refractory to medications or who have generalized symptoms (e.g. patients with Early-Onset Primary Dystonia(DYT1) mutations and other dystonia subtypes). DBS patients typically experience significant improvement in disabling symptoms; however, detailed programming is always required, and stimulation-induced side effects commonly emerge. Clinicians may empirically vary voltage, pulse width, frequency and also the active contacts on the DBS lead to achieve observed optimal benefits. The majority of DBS patients undergo repeat surgeries to replace the implantable pulse generator (IPG) every 2.5 to 5 years. It has been demonstrated that, in dystonia patients, that higher settings are required for adequate symptomatic control, and that neurostimulators have a considerably shorter life when compared to neurostimulators from patients with essential tremor or Parkinson's disease. Additionally, several smaller studies have suggested that alternative pulse stimulation properties and pulse shape modifications can lower IPG battery consumption. Newer patterns of stimulation (regularity of pulses and shapes of pulses) have not been widely tested in clinical practice, and are not part of the current FDA device labeling. Novel patterns of stimulation do however, have the potential to improve symptoms, reduce side effects, and to preserve the neurostimulator life. The current research proposal will prospectively study biphasic pulse stimulation paradigms and its effects on dystonic symptoms. The investigators aim to demonstrate that we can tailor DBS settings to address dystonia symptoms, improve the safety profile, characterize distinct clinical advantages, and carefully document the safety and neurostimulator battery consumption profile for biphasic stimulation.

Completed5 enrollment criteria

Propensity to Develop Plasticity in the Parieto-Motor Networks in Dystonia From the Perspective...

Writer's CrampHealthy Volunteers1 more

Background: - People with dystonia have muscle contractions they can t control. These cause slow, repeated motions or abnormal postures. People with dystonia have abnormalities in certain parts of the brain. Researchers want to study the activity of two different brain areas in people with writer s cramp and cervical dystonia. Objective: - To compare brain activity in people with dystonia to that in healthy people. Eligibility: Right-handed people ages of 18-65 with cervical dystonia or writer s cramp. Healthy volunteers the same ages. Design: Participants will be screened with a physical exam. They will answer questions about being right- or left-handed. At study visit 1, participants will:<TAB> Have a neurological exam. Answer questions about how their disease impacts their daily activities. Have a structural magnetic resonance imaging (MRI) scan. Participants will lie on a table that can slide <TAB>in and out of a metal cylinder. This is surrounded by a strong magnetic field. Do 2 simple computer tasks. At study visit 2: Participants will have transcranial magnetic stimulations (TMS) at 2 places on the head. Two wire coils will be held on the scalp. A brief electrical current creates a magnetic pulse that affects brain activity. Muscles of the face, arm, or leg might twitch. Participants may have to tense certain muscles or do simple tasks during TMS. They may be asked to rate any discomfort caused by TMS. Muscle activity in the right hand will be recorded by electrodes stuck to the skin of that hand.

Completed26 enrollment criteria

Post-marketing Surveillance of Administration of Botulinum Toxin Type B(NerBloc)-Investigation of...

Cervical Dystonia

Investigation of the clinical condition and safety in patients with cervical dystonia

Completed2 enrollment criteria

Relief of Pain in Patients With Cervical Dystonia Through the Use of Transcutaneous Electric Nerve...

Cervical DystoniaPain

Dystonia is a chronic neurological condition that impacts the quality of life due to decreased mobility, social repercussions caused by others's perception of abnormal involuntary movement and frequent pain. Botulinum toxin has been shown to be effective in reducing pain in dystonia. However, many patients remain painful despite the injections, especially when the decrease in the effect of the latter, performed every 3 months on average. Despite frequent use of TENS in pain relief, only a few small studies studying TENS in dystonia were published and none of them reported TENS effects on dystonic pain using sensory threshold. This study aimed to quantify the efficacy and tolerance of TENS in the indication of pain related to dystonia, focusing on cervical dystonia which is the most common form of dystonia.

Completed7 enrollment criteria

Deep Brain Stimulation Effects in Dystonia

Dystonia

Deep Brain Stimulation (DBS) is an effective therapy for patients with medically refractory primary dystonia. However, DBS programming for dystonia is not standardized and multiple clinic visits are frequently required to adequately control symptoms. We aim to longitudinally record brain signals from patients using a novel neurostimulator that can record brain signals. We will correlate brain signals to clinical severity scores to identify pathological rhythms in the absence of DBS, and we will study the effects of DBS on these signals in order to guide clinical programming. We are going to recruit patients who receive the Medtronic Percept device, which allows for brain signal recordings (this feature is FDA approved). The investigators will be conducting an observational study using this device to collect data that the subjects receive as standard of care.

Completed12 enrollment criteria
1...181920...25

Need Help? Contact our team!


We'll reach out to this number within 24 hrs