
Nivolumab and Ipilimumab in Treating Patients With Rare Tumors
Acinar Cell CarcinomaAdenoid Cystic Carcinoma94 moreThis phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer [NPC], and squamous cell carcinoma of the head and neck [SCCHN]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) Undifferentiated carcinoma of gastrointestinal (GI) tract Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) Sarcomatoid carcinoma of lung Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) Squamous cell carcinoma variants of the genitourinary (GU) system Spindle cell carcinoma of kidney, pelvis, ureter Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) Odontogenic malignant tumors Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) Pheochromocytoma, malignant (closed to accrual) Paraganglioma (closed to accrual 11/29/2018) Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) Desmoid tumors Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) Malignant giant cell tumors Chordoma (closed to accrual 11/29/2018) Adrenal cortical tumors (closed to accrual 06/27/2018) Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) Not Otherwise Categorized (NOC) Rare Tumors [To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org] (closed to accrual 03/15/2019) Adenoid cystic carcinoma (closed to accrual 02/06/2018) Vulvar cancer (closed to accrual) MetaPLASTIC carcinoma (of the breast) (closed to accrual) Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) Perivascular epithelioid cell tumor (PEComa) Apocrine tumors/extramammary Paget's disease (closed to accrual) Peritoneal mesothelioma Basal cell carcinoma (temporarily closed to accrual 04/29/2020) Clear cell cervical cancer Esthenioneuroblastoma (closed to accrual) Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) Clear cell endometrial cancer Clear cell ovarian cancer (closed to accrual) Gestational trophoblastic disease (GTD) Gallbladder cancer Small cell carcinoma of the ovary, hypercalcemic type PD-L1 amplified tumors Angiosarcoma High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor [PNET] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)

Paclitaxel and Carboplatin With or Without Bevacizumab in Treating Patients With Stage II, Stage...
Fallopian Tube Endometrioid AdenocarcinomaFallopian Tube Mucinous Adenocarcinoma28 moreThis phase III clinical trial studies two different dose schedules of paclitaxel to see how well they work in combination with carboplatin with or without bevacizumab in treating patients with stage II, III or IV ovarian epithelial cancer, primary peritoneal cancer, or fallopian tube cancer. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a type of drug called a monoclonal antibody and blocks tumor growth by stopping the growth of blood vessels that tumors need to grow. It is not yet known whether giving paclitaxel with combination chemotherapy once every three weeks is more effective than giving paclitaxel once a week in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.

Cediranib Maleate and Olaparib in Treating Patients With Recurrent Ovarian, Fallopian Tube, or Peritoneal...
Fallopian Tube CarcinomaOvarian Endometrioid Adenocarcinoma5 moreThis partially randomized phase I/II trial studies the side effects and the best dose of cediranib maleate and olaparib and to see how well they work compared to olaparib alone in treating patients with ovarian, fallopian tube, peritoneal, or triple-negative breast cancer that has returned after a period of improvement (recurrent). Cediranib maleate may help keep cancer cells from growing by affecting their blood supply. Olaparib may stop cancer cells from growing abnormally. The combination of cediranib maleate and olaparib may help to keep cancer from growing.

Carboplatin, Paclitaxel and Gemcitabine Hydrochloride With or Without Bevacizumab After Surgery...
Clear Cell AdenocarcinomaFallopian Tube Clear Cell Adenocarcinoma23 moreThis randomized phase III trial studies carboplatin, paclitaxel and gemcitabine hydrochloride when given together with or without bevacizumab after surgery to see how well it works in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer that has come back. Drugs used in chemotherapy, such as carboplatin, paclitaxel and gemcitabine hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective when given with or without bevacizumab after surgery in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer.

Radiation Therapy With or Without Cisplatin in Treating Patients With Recurrent Endometrial Cancer...
Endometrial Endometrioid AdenocarcinomaVariant With Squamous Differentiation7 moreThis randomized phase II trial studies radiation therapy and cisplatin to see how well they work compared with radiation therapy alone in treating patients with endometrial cancer that has come back. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving radiation therapy together with cisplatin is more effective than radiation therapy alone in treating patients with endometrial cancer.

Testing the Combination of Olaparib and Durvalumab, Cediranib and Durvalumab, Olaparib and Capivasertib,...
Endometrial AdenocarcinomaEndometrial Mixed Cell Adenocarcinoma4 moreThis phase II trial studies the effects of the combination of olaparib and durvalumab, cediranib and durvalumab, olaparib and capivasertib, and cediranib alone in treating patients with endometrial cancer that has come back (recurrent) or does not respond to treatment (refractory). Olaparib, cediranib, and capivasertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Durvalumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. Testing the combinations may lower the chance of endometrial cancer growing or spreading compared to usual care.

Testing the Addition of the Immunotherapy Drug, Pembrolizumab, to the Usual Radiation Treatment...
Endometrial Endometrioid AdenocarcinomaStage I Uterine Corpus Cancer AJCC v81 moreThis phase III trial compares whether the addition of pembrolizumab to radiation therapy is more effective than radiation therapy alone in reducing the risk of cancer coming back (recurrence) in patients with newly diagnosed stage I-II endometrial cancer. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. The addition of pembrolizumab to radiation treatment may be more effective than radiation treatment alone in reducing cancer recurrence.

Testing the Addition of an Immunotherapy Drug, Tremelimumab, to the PARP Inhibition Drug, Olaparib,...
Fallopian Tube Endometrioid TumorFallopian Tube High Grade Serous Adenocarcinoma12 moreThis phase II trial studies how well olaparib with or without tremelimumab works in treating patients with ovarian, fallopian tube, or peritoneal cancer that has come back (recurrent). PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as olaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Immunotherapy with monoclonal antibodies, such as tremelimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and tremelimumab together may work better than olaparib alone in treating patients with ovarian, fallopian tube, or peritoneal cancer.

Testing the Combination of Cediranib and Olaparib in Comparison to Each Drug Alone or Other Chemotherapy...
Fallopian Tube Clear Cell AdenocarcinomaFallopian Tube Endometrioid Adenocarcinoma13 moreThis randomized phase II/III trial studies how well cediranib maleate and olaparib work when given together or separately, and compares them to standard chemotherapy in treating patients with ovarian, fallopian tube, or primary peritoneal cancer that has returned (recurrent) after receiving chemotherapy with drugs that contain platinum (platinum-resistant) or continued to grow while being treated with platinum-based chemotherapy drugs (platinum-refractory). Cediranib maleate and olaparib may stop the growth of tumor cells by blocking enzymes needed for cell growth. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving cediranib maleate and olaparib together may cause more damage to cancer cells when compared to either drug alone or standard chemotherapy.

Ruxolitinib Phosphate, Paclitaxel, and Carboplatin in Treating Patients With Stage III-IV Epithelial...
Fallopian Tube Clear Cell AdenocarcinomaFallopian Tube Endometrioid Adenocarcinoma24 moreThis phase I/II trial studies the side effects and the best dose of ruxolitinib phosphate when given together with paclitaxel and carboplatin and to see how well they work in treating patients with stage III-IV epithelial ovarian, fallopian tube, or primary peritoneal cancer. Ruxolitinib phosphate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ruxolitinib phosphate together with paclitaxel and carboplatin may be a better treatment for epithelial ovarian, fallopian tube, or primary peritoneal cancer compared to paclitaxel and carboplatin alone.