Campath-1H and EPOCH to Treat Non-Hodgkin's T- and NK-Cell Lymphomas
LymphomaT-Cell2 moreBackground: The paradigm of combining therapeutic agents with non-overlapping toxicities for the treatment of malignancy produces clinical remissions and cures in a number of tumor types. A new class of agents, humanized and chimerized monoclonal antibodies, typically have little or no hematopoietic toxicity and can be readily combined with full doses of cytotoxic chemotherapy. It has become clear that in certain lymphomas and breast cancers, the combination of monoclonal antibodies and chemotherapy improves response rate and the quality of the response compared with that achieved by treatment with either agent alone. The clinical outcome for patients with T-cell non-Hodgkins lymphoma is significantly inferior to the outcome of patients with B-cell non-Hodgkin s lymphoma. In most reports less than 20% of patients with T cell lymphoid malignancies remain free of disease at 5 years. Objectives: Determine the toxicity of Alemtuzumab and etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin (EPOCH) chemotherapy in untreated cluster of differentiation 52 (CD52)-expressing T and natural killer (NK) lymphoid malignancies. Determine the maximum tolerated dose of Alemtuzumab administered in combination with EPOCH chemotherapy. Determine in a preliminary fashion the anti-tumor activity of the combination of Alemtuzumab and EPOCH chemotherapy. Eligibility: CD52-expressing lymphoid malignancy. Patients with chemotherapy naive aggressive T & NK lymphomas. Patients with alk-positive anaplastic large cell lymphoma and patients with T cell precursor disease are not eligible. Age greater than or equal to 17 years. Adequate organ function, unless impairment due to respective organ involvement by tumor. No active symptomatic ischemic heart disease, myocardial infarction or congestive heart. failure within the past year. Human immunodeficiency virus (HIV) negative. Not pregnant or nursing. Design: Three dose levels of Alemtuzumab will be evaluated to determine the toxicity profile and in a preliminary fashion the antitumor activity of the combination with Dose-Adjusted EPOCH. Three dose levels of Alemtuzumab will be explored, in cohorts of three to six patients each. Patients will receive either 30, 60, or 90 mg of Alemtuzumab on day 1 of therapy, followed by dose-adjusted EPOCH chemotherapy days 1-5.
Alemtuzumab, Fludarabine Phosphate, and Total-Body Irradiation Followed by Cyclosporine and Mycophenolate...
Acute Undifferentiated LeukemiaAdult Acute Lymphoblastic Leukemia in Remission64 moreThis phase II trial is studying the side effects and best dose of alemtuzumab when given together with fludarabine phosphate and total-body irradiation followed by cyclosporine and mycophenolate mofetil in treating patients who are undergoing a donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, a monoclonal antibody, such as alemtuzumab, and radiation therapy before a donor stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
Haploidentical Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancer...
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in Remission95 moreThis phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
GELAD Chemotherapy and Sandwiched Radiotherapy in the Treatment of Stage IE/IIE Natural Killer/T-cell...
Extranodal NK-T-Cell LymphomaNasal TypeThe purpose of this study is to evaluate the efficacy and safety of gemcitabine, etoposide, pegaspargase and dexamethasone (GELAD) chemotherapy and sandwiched radiotherapy as first-line treatment in patients with de novo stage IE/IIE extranodal natural killer/T-cell lymphoma, nasal type.
Study of Akt Inhibitor MK2206 in Patients With Relapsed Lymphoma
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma34 moreThis phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RO4929097 and Capecitabine in Treating Patients With Refractory Solid Tumors
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell Lymphoma85 moreThis phase I clinical trial is studying the side effects and best dose of RO4929097 when given together with capecitabine in treating patients with refractory solid tumors. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving RO4929097 together with chemotherapy may kill more tumor cells.
Bortezomib and Azacitidine in Treating Patients With Relapsed or Refractory T-Cell Lymphoma
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma10 moreRATIONALE: Bortezomib and azacitidine may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of bortezomib when given together with azacitidine in treating patients with relapsed or refractory T-cell lymphoma.
High-Dose Chemotherapy With or Without Total-Body Irradiation Followed by Autologous Stem Cell Transplant...
Adult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in Remission59 moreThis pilot trial studies different high-dose chemotherapy regimens with or without total-body irradiation (TBI) to compare how well they work when given before autologous stem cell transplant (ASCT) in treating patients with hematologic cancer or solid tumors. Giving high-dose chemotherapy with or without TBI before ASCT stops the growth of cancer cells by stopping them from dividing or killing them. After treatment, stem cells are collected from the patient's blood or bone marrow and stored. More chemotherapy may be given to prepare for the stem cell transplant. The stem cells are then returned to the patient to replace the blood forming cells that were destroyed by the chemotherapy.
Vorinostat in Treating Patients With Metastatic or Unresectable Solid Tumors or Lymphoma and Liver...
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell Lymphoma62 moreThis phase I trial is studying the side effects and best dose of vorinostat in treating patients with metastatic or unresectable solid tumors or lymphoma and liver dysfunction. (closed for accrual as of 04/05/2010) Vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Vorinostat may have different effects in patients who have changes in their liver function.
Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor...
Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell Lymphoma34 moreThis pilot clinical trial studies low-dose total body irradiation and donor peripheral blood stem cell transplant followed by donor lymphocyte infusion in treatment patients with non-Hodgkin lymphoma, chronic lymphocytic leukemia, or multiple myeloma. Giving total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect.