search

Active clinical trials for "Glioma"

Results 41-50 of 1149

Clinical Trial to Assess the Safety and Efficacy of AloCELYVIR With Newly Diagnosed Diffuse Intrinsic...

Diffuse Intrinsic Pontine GliomaMedulloblastoma2 more

The aim of this study is to assess the safety and efficacy of AloCELYVIR, which consist in bone marrow-derived allogenic mesenchymal stem cells infected with an oncolytic Adenovirus, ICOVIR-5. It has recently been proven that this type of cells are able of transporting oncolytic substances to tumor targets that are difficult to reach, such as medulloblastomas and gliomas, youth cancers located in the cranial cavity that have a poor prognosis and a fatal outcome. In addition, to exerting an anti-tumor action, this virus has the ability to stimulate the immune response, making the therapy even more effective. Thus, the diffuse intrinsic pontine glioma and the medulloblastoma in relapse/progression have been chosen to study the potential of this new advanced therapy through a weekly infusion for 8 weeks.

Recruiting35 enrollment criteria

Study of LAM561 Acid in Pediatric Patients With Malignant Glioma and Other Advanced Solid Tumors...

High-grade GliomaSolid Tumor2 more

An open label, non-randomized study in pediatric patients with advanced high-grade gliomas and other solid tumors. The study will be performed in two phases: a dose escalation phase in up to 18 patients following a standard "3+3" design to establish dose-limiting toxicity (DLT) and a "safe" dose of LAM561 followed by an expanded safety cohort of up to 10 patients treated at the Maximum Tolerated Dose (MTD). If the MTD is well tolerated in the expanded safety cohort, that dose becomes the Recommended Phase 2 Dose (RP2D). Glioma patients and other solid tumor patients (including non-glial brain tumors) will be treated as a single cohort. Patients with either tumor type will be allowed to enroll on the study as positions are made available. No tumor type will be given priority over another and there is no minimum number of glioma patients or solid tumor patients that must be enrolled on the trial.

Recruiting40 enrollment criteria

Neuropsychological and Oncological Outcomes in Grade 2 or 3 Glioma Patients Undergoing Postoperative...

Glioma of Brain

Background: Infiltrative low grade gliomas (LGGs) are the most common primary central nervous system malignancies excluding the highest grade glioma, glioblastoma multiforme. Craniotomy with maximal safe tumor resection is endeavored to achieve longer survivals in LGG patients. Unfortunately, due to the infiltrative nature of gliomas and the frequent tumor location in eloquent areas, gross total resection is usually not applicable. According to National Comprehensive Cancer Network 2015 guidelines, postoperative adjuvant radiation therapy (RT) is recommended for most adult patients with low-grade infiltrative LGGs in order to enhance local control and prolong progression-free survival (PFS), except those who are no older than 40 years of age and in whom maximal safe resection is not feasible. However, brain irradiation-related neurocognitive function (NCF) sequelae are potentially and indeed a concern which should not be ignored. In terms of the time course of cranial irradiation-induced NCF decline, it might vary considerably according to the specific domains which are selected to be measured. Early neurocognitive decline principally involve impairments of episodic memory, which has been significantly associated with functions of the hippocampus. This study thus aims to investigate the impact of partial brain irradiation with using contemporary radiotherapeutic techniques on neurocognitive performances, intracranial local control, and progression-free survival in patients with intracranial high-risk grade 2 or 3 gliomas. Methods: Patients with intracranial high-risk low-grade or grade 3 gliomas will be enrolled to this study once postoperative adjuvant RT is recommended. All eligible and recruited patients should receive baseline functional brain MRI examination and baseline neurobehavioral assessment. Subsequently, partial cranial irradiation will be initiated within one month approximately after enrollment. Brain RT dose will be 5000 - 6000 cGy in 25 - 30 fraction during 5 - 7 weeks. Accordingly, a battery of neuropsychological measures, which includes 7 standardized neuropsychological tests (e.g., executive functions, verbal & non-verbal memory, working memory, and psychomotor speed), is used to evaluate neurobehavioral functions for our registered patients. The primary outcome measure is delayed recall, as determined by the change/decline in verbal memory or non-verbal memory from the baseline assessment to 4 months after the start of postoperative adjuvant RT.

Recruiting5 enrollment criteria

BGB-290 and Temozolomide in Treating Isocitrate Dehydrogenase (IDH)1/2-Mutant Grade I-IV Gliomas...

GlioblastomaIDH1 Gene Mutation8 more

This phase I trial studies the side effects and best dose of BGB-290 and temozolomide in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma that is newly diagnosed or has come back. BGB-290 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BGB-290 and temozolomide may work better in treating adolescents and young adults with IDH1/2-mutant grade I-IV glioma.

Recruiting51 enrollment criteria

Phase I/IIa Study of Concomitant Radiotherapy With Olaparib and Temozolomide in Unresectable High...

Malignant GliomasRadiotherapy1 more

The Stupp protocol is the standard treatment of glioblastoma multiform (GBM) which prognosis remains poor. The non-dividing nature of normal brain cells provides an opportunity to enhance the therapeutic ratio by combining radiation with inhibitors of replication-specific DNA repair pathways such poly(ADP-ribose) polymerase (PARP) inhibitors, thus inducing more cytotoxic effects of DNA-damage related to treatment modalities, including alkylating reagents like temozolomide (TMZ). Olaparib, a potent PARP inhibitor, overcomes apoptotic resistance and sensitizes GBM cells for death receptor-mediated apoptosis induced by TRAIL (Tumor necrosis factor-Related Apoptosis Inducing Ligand). Moreover, inhibition of PARP activity increases cellular sensitivity to ionizing radiation: it was even suggested to be more pronounced in tumors than in normal tissue. Lastly, progress in technical imaging and intensity-modulated-radiotherapy (IMRT) techniques provide new possibilities for sparing healthy tissues.

Recruiting57 enrollment criteria

Ensartinib in Treating Patients With Relapsed or Refractory Advanced Solid Tumors, Non-Hodgkin Lymphoma,...

Advanced Malignant Solid NeoplasmMalignant Solid Neoplasm31 more

This phase II Pediatric MATCH trial studies how well ensartinib works in treating patients with solid tumors, non-Hodgkin lymphoma, or histiocytic disorders with ALK or ROS1 genomic alterations that have come back (recurrent) or does not respond to treatment (refractory) and may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Ensartinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Recruiting55 enrollment criteria

International Cooperative Phase III Trial of the HIT-HGG Study Group (HIT-HGG-2013)

Glioblastoma WHO Grade IVDiffuse Midline Glioma Histone 3 K27M WHO Grade IV3 more

The HIT-HGG-2013 trial offers an innovative high-quality diagnostics and science program for children and adolescents >3 years, suffering from one of the following types of high grade gliomas: glioblastoma WHO grade IV (GBM) diffuse midlineglioma histone 3 K27M mutated WHO grade IV (DMG) anaplastic astrocytoma WHO grade III (AA) diffuse intrinsic pontine glioma (DIPG) gliomatosis cerebri (GC) For 1.-3. diagnosis has to be confirmed by neuropathological survey, for 4. and 5. diagnosis has to be confirmed by neuroradiological survey. In addition to standard treatment (radiotherapy and temozolomide chemotherapy) the effect of valproic acid which is traditionally used for treatment of seizure disorder, will be investigated. The aim of the trial will be to investigate whether this drug may increase the effects of radio- and chemotherapy, resulting in a better survival of the treated patients. Scientific studies provided evidence for anti-tumoral effects of valproic acid: the drug seems to be a so-called histondeacetylase inhibitor (HDAC inhibitor), controlling important genetic processes of tumor growth. Studies in cell culture, animals and first clinical trials in adults as well provided evidence for efficacy of valproic acid in the treatment of glioblastoma. Due to this we hope children and adolescents suffering from GBM, DMG, AA, DIPG und GC will benefit from the treatment, too. The aim of the HIT-HGG-2013 trial will be to compare the effects of Valproic acid with data of the HIT-HGG-2007 trial (children and adolescents with same diseases, only treated with simultaneous temozolomide radiochemotherapy). In the present study, it was originally planned to investigate the therapeutic efficiency and safety of valproic acid and the autophagy inhibitor chloroquine, both in addition to temozolomide therapy. Since distribution of Resochin junior (chloroquine phosphate) was terminated, recruitment of new patients was stopped on August 8, 2019. For continuation of the trial, the chloroquine arm was closed but the patients already recruited in this arm will be followed up.

Recruiting23 enrollment criteria

Whole Brain Radiation Therapy With Standard Temozolomide Chemo-Radiotherapy and Plerixafor in Treating...

GlioblastomaGlioblastoma With Primitive Neuronal Component3 more

This phase II trial studies how well whole brain radiation therapy works with standard temozolomide chemo-radiotherapy and plerixafor in treating patients with glioblastoma (brain tumor). Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Plerixafor is a drug that may prevent recurrence of glioblastoma after radiation treatment. Giving whole brain radiation therapy with standard temozolomide chemo-radiotherapy and plerixafor may work better in treating patients with glioblastoma.

Recruiting19 enrollment criteria

CAR T Cells to Target GD2 for DMG

Diffuse Midline GliomaH3 K27M-Mutant

The CARMIGO Trial is a single-centre, non-randomised, open label Phase I clinical trial of an Advanced Therapy Investigational Medicinal Product (ATIMP) in children and young adults aged 2-16 years with Diffuse Midline Glioma (DMG). The study will evaluate the feasibility of generating the ATIMP, the safety and tolerability of the GD2CAR T-cell therapy and how effectively GD2CAR T-cells engraft, expand and persist following administration in patients with DMG.

Recruiting27 enrollment criteria

Temporally-modulated Pulsed Radiation Therapy (TMPRT) After Prior EBRT for Recurrent IDH-mutant...

AstrocytomaOligodendroglioma3 more

This clinical trial studies the side effects of temporally-modulated pulsed radiation therapy (TMPRT) in patients with IDH-mutant gliomas who have previously received radiation therapy to the brain. TMPRT is a radiation technique in which radiation is delivered in multiple small doses on a specific timed interval, instead of delivering one large dose at one time. This technique may improve efficacy while reducing toxicity and improving patient quality of life.

Recruiting14 enrollment criteria
1...456...115

Need Help? Contact our team!


We'll reach out to this number within 24 hrs