search

Active clinical trials for "Gliosarcoma"

Results 111-120 of 234

A Study of ABT-414 in Participants With Newly Diagnosed Glioblastoma (GBM) With Epidermal Growth...

GlioblastomaGliosarcoma

This study seeks to determine whether the addition of ABT-414 to concomitant radiotherapy and temozolomide (TMZ) followed by combination of ABT-414 with adjuvant TMZ prolongs overall survival (OS) among participants with newly diagnosed glioblastoma (GBM) with epidermal growth factor receptor (EGFR) amplification. In addition, there is a Phase 1, open-label, multicenter sub-study to assess the pharmacokinetics, safety and tolerability of ABT-414 in participants with newly diagnosed EGFR-amplified GBM who have mild or moderate hepatic impairment.

Completed10 enrollment criteria

Dimethyl Fumarate, Temozolomide, and Radiation Therapy in Treating Patients With Newly Diagnosed...

Adult Brain GlioblastomaAdult Giant Cell Glioblastoma1 more

This phase 1 trial studies the side effects and best dose of dimethyl fumarate when given together with temozolomide and radiation therapy(RT) in treating patients with newly diagnosed glioblastoma multiforme (GBM). Dimethyl fumarate may help radiation therapy work better by making tumor cells more sensitive to the radiation therapy. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving dimethyl fumarate with temozolomide and radiation therapy may work better in treating glioblastoma multiforme.

Completed24 enrollment criteria

A Study of Rindopepimut/GM-CSF in Patients With Relapsed EGFRvIII-Positive Glioblastoma

GlioblastomaSmall Cell Glioblastoma5 more

The purpose of this research study is to find out whether adding an experimental vaccine called rindopepimut (also known as CDX-110) to the commonly used drug bevacizumab can improve progression free survival (slowing the growth of tumors) of patients with relapsed EGFRvIII positive glioblastoma.

Completed22 enrollment criteria

Cixutumumab and Temsirolimus in Treating Younger Patients With Recurrent or Refractory Sarcoma

Childhood Alveolar Soft Part SarcomaChildhood Angiosarcoma13 more

This phase II trial studies how well cixutumumab and temsirolimus work in treating patients with recurrent or refractory sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab and temsirolimus together may kill more tumor cells.

Completed67 enrollment criteria

DNX-2401 With Interferon Gamma (IFN-γ) for Recurrent Glioblastoma or Gliosarcoma Brain Tumors

Glioblastoma or Gliosarcoma

Glioblastoma (GBM) and gliosarcoma (GS) are the most common and aggressive forms of malignant primary brain tumor in adults and can be resistant to conventional therapies. The purpose of this Phase Ib study is to evaluate how well a recurrent glioblastoma or gliosarcoma tumor responds to one injection of DNX-2401, a genetically modified, conditionally replicative and oncolytic human-derived adenovirus. DNX-2401 is delivered directly into the tumor where it may establish an active infection by replicating in and killing tumor cells.

Completed16 enrollment criteria

Oral Pazopanib Plus Oral Topotecan Metronomic Antiangiogenic Therapy for Recurrent Glioblastoma...

GlioblastomaGlioblastoma Multiforme3 more

Background: Glioblastoma is the most common and most aggressive type of malignant brain tumor. The drug pazopanib is used to treat people with a type of kidney cancer. Topotecan is used to treat lung cancer. Both topotecan and pazopanib have individually been used to treat patients with glioblastoma and some anti-tumor activity has been found. Researchers want to see if these two drugs together may be able to help people with glioblastoma. Objectives: To learn if pazopanib with topotecan can help control glioblastoma. Also, to study the safety of this drug combination. Eligibility: Adults at least 18 years old whose glioblastoma has returned after treatment. Design: Participants will be screened with: Medical history Physical exam Blood and urine tests Brain computed tomography (CT) or magnetic resonance imaging (MRI) For these, participants lay in a machine that takes pictures. Chest CT scan or x-ray Heart electrocardiogram (EKG) A questionnaire about quality of life Participants will be assigned to a study group. Participants will take the study drugs for 28-day cycles for up to 1 year. They will take capsules of topotecan by mouth once every day. They will take tablets of pazopanib by mouth once every day. Participants will write in a diary the times they take the study drugs. Participants will have several study visits during each cycle. These may include Blood pressure measurement Blood and urine tests EKG Physical exam and/or neurological exam Brain MRI or CT scan to check the status of the disease A symptom questionnaire At the end of treatment, participants will have a physical exam. They may have blood drawn. Participants will have follow-up calls once every 3 months to check.

Completed79 enrollment criteria

Vorinostat and Radiation Therapy Followed by Maintenance Therapy With Vorinostat in Treating Younger...

Anaplastic AstrocytomaAnaplastic Oligoastrocytoma2 more

This phase I/II trial studies the side effects and best dose of vorinostat and to see how well it works when given together with radiation therapy followed by maintenance therapy with vorinostat in treating younger patients with newly diagnosed diffuse intrinsic pontine glioma (a brainstem tumor). Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving vorinostat together with radiation therapy may kill more tumor cells.

Completed28 enrollment criteria

Bafetinib in Treating Patients With Recurrent High-Grade Glioma or Brain Metastases

Adult Anaplastic AstrocytomaAdult Anaplastic Ependymoma8 more

RATIONALE: Bafetinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This clinical trial studies bafetinib in treating patients with recurrent high-grade glioma or brain metastases.

Completed30 enrollment criteria

Phase III Study of Rindopepimut/GM-CSF in Patients With Newly Diagnosed Glioblastoma

GlioblastomaSmall Cell Glioblastoma3 more

This 2-arm, randomized, phase III study will investigate the efficacy and safety of the addition of rindopepimut (an experimental cancer vaccine that may act to promote anti-cancer effects in patients who have tumors that express the EGFRvIII protein) to the current standard of care (temozolomide) in patients with recently diagnosed glioblastoma, a type of brain cancer. All patients will be administered temozolomide, the standard treatment for glioblastoma. Half the patients will be randomly assigned to receive rindopepimut and half the patients will be randomly assigned to receive a control called keyhole limpet hemocyanin. Patients will be treated in a blinded fashion (neither the patient or the doctor will know which arm of the study the patient is on). Patients will be treated until disease progression or intolerance to therapy and all patients will be followed for survival.

Completed22 enrollment criteria

Aflibercept, Radiation Therapy, and Temozolomide in Treating Patients With Newly Diagnosed or Recurrent...

Adult Anaplastic AstrocytomaAdult Anaplastic Oligodendroglioma5 more

This phase I trial is studying the side effects and best dose of aflibercept when given together with radiation therapy and temozolomide in treating patients with newly diagnosed or recurrent glioblastoma multiforme, gliosarcoma, or other malignant glioma. Aflibercept may stop the growth of tumor cells by blocking blood flow to the tumor. Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving aflibercept together with radiation therapy and temozolomide may kill more tumor cells.

Completed50 enrollment criteria
1...111213...24

Need Help? Contact our team!


We'll reach out to this number within 24 hrs