search

Active clinical trials for "Wounds and Injuries"

Results 3231-3240 of 4748

Wound Closure After Total Knee Replacement

Wound of Knee

To compare the wound healing after total knee replacement wound closure with staples versus subcuticular prolene suture.

Unknown status8 enrollment criteria

Early Team Based Neuro-rehabilitation After Traumatic Brain Injury - a Pilot Study

Traumatic Brain InjuryConcussion1 more

The aim is to evaluate the study design, procedure and measurements in a randomised controlled pilot study.

Unknown status8 enrollment criteria

Nanofat on Wound Healing and Scar Formation

ScarsDelayed Wound Healing3 more

This study will evaluate the effectiveness and safety of intradermal injection of Nanofat on wound healing and scar formation.

Unknown status6 enrollment criteria

Cortical Biomarkers of Hand Function and Recovery After Injury

StrokeSpinal Cord Injuries

This is a pilot study to collect data to support a VA grant submission to study fMRI and neurophysiological predictors of hand function and recovery during a robotic intervention in people with hand impairments due to stroke or spinal cord injury.

Terminated13 enrollment criteria

Aerobic Exercise and Transcranial Low Laser Therapy in Patients With Central Nervous System Injury...

Post StrokePost-Traumatic Headache7 more

Objective of this protocol will be to evaluate the parameters related to the function of the musculoskeletal and cardiorespiratory system, through a rehabilitation and training program for people with acquired central nervous system and multiple sclerosis. The study will consist of volunteers with acquired CNS lesions and multiple sclerosis of both sexes, between 18 and 85 years old, and who wander with or without aid devices, randomly divided into 3 groups: Group 1 (cardiopulmonary treatment), Group 2 (cardiopulmonary treatment and transcranial photobiomodulation application) and Group 3 (cardiopulmonary treatment and placebo laser). All groups will receive aerobic training on a treadmill (Moviment®) with the aid of a suspension equipment (BrainMov® Physical Activity Station). The transcranial photobiomodulation (laser diode, λ = 810 nm, beam area 0.028 cm², power of 100 mW, power density of 3.5 mW / cm², energy of 3 Joules / point and energy density of 107.1 J / cm2) will be applied on the skin / scalp and the International System 10-20 at points F7, F8 and AFz will be used as reference for irradiation. Muscular activation, heart rate variability, lung volumes and capacities, fatigability, exercise tolerance, cognition and quality of life will be evaluated before, during, at the end and after two months of rehabilitation. The treatment proposed in this study, using transcranial photobiomodulation, is expected to improve muscle, sensory, cardiorespiratory, cognitive functions and to interfere positively in the quality of life of the volunteers.

Unknown status19 enrollment criteria

Effects of Spinal Cord Injury Exercise Guidelines

Chronic PainSpinal Cord Injuries

Over 85,000 Canadians live with a spinal cord injury (SCI). The vast majority experience chronic pain from neuropathic or musculoskeletal origins, with many reporting the pain to be more physically, psychologically and socially debilitating than the injury itself. Currently, pharmaceuticals are the front line treatment recommendation for SCI pain, despite having many side-effects and giving minimal relief. Alternatively, studies conducted in controlled lab and clinical settings suggest that exercise may be a safe, effective behavioural strategy for reducing SCI-related chronic pain. Two ways in which exercise may alleviate pain are by reducing inflammation and increasing descending inhibitory control. To date, no study has tested the effects of exercise, performed in a home-/community-setting, on chronic pain in adults with SCI. Furthermore, information on the exercise dose required to alleviate chronic SCI pain is virtually non-existent, making it impossible for clinicians and fitness trainers to make evidence- informed recommendations regarding the types and amounts of exercise to perform in order to manage SCI pain. Recently (2018), an international team published two scientific SCI exercise guidelines: one to improve fitness and one to improve cardiometabolic health. These scientific guidelines have been translated into Canadian community SCI exercise guidelines and provide the exercise prescription for the proposed study. The investigators' overarching research question is: can home-/community-based exercise-prescribed according to these new SCI exercise guidelines and supported through a theory-based behavioural intervention- significantly reduce chronic pain in adults with SCI?

Unknown status15 enrollment criteria

Mesenchymal Stem Cells in Central Nervous System injury2017

Central Nervous System Injury

Central nervous system (CNS) injury leads to morbidity in patients, which has few good rehabilitation measures. Mesenchymal stem cells seem to have regenerative and tissue-repairing capabilities. The investigators design this study to infuse mesenchymal stem cells (MSCs) intrathecally to CNS injury patients, and observe the safety and efficacy by recording the change of nervous system scores, trying to prove the effect of MSC in rehabilitate CNS injury.

Unknown status9 enrollment criteria

Virtual Reality Rehabilitation in Patients With Acquired Brain Injury

Acquired Brain Injury

The aim of the study is to investigate the effectiveness of motor and cognitive virtual environment rehabilitation on upper limb function in sub-acute patients after an acquired brain injury.

Unknown status10 enrollment criteria

Enhancing Recovery in Non-Traumatic Spinal Cord Injury

Spinal Cord CompressionSpinal Cord Injuries2 more

The investigators have spent the last decade uncovering unique metabolic and functional abnormalities in the brains of patients with spinal cord compression. Degenerative spinal cord compression represents a unique model of reversible spinal cord injury. In the investigator's previous work, they have demonstrated that cortical reorganization and recruitment is associated with metabolic changes in the brains of patients recovering from spinal cord compression and is correlated with recovery and improved neurological scores. The goal of this study is to combine a rigorous platform of clinical care that includes preoperative evaluation, surgery, and rehabilitation, with state of the art imaging techniques to demonstrate how rehabilitative therapy can increase brain plasticity and recovery of neurological function in patients with spinal cord injury. Neurological function will be carefully evaluated in two groups of patients, those receiving rehabilitation and those not receiving rehabilitation after spine surgery, and will be correlated with the results of advanced imaging.

Unknown status8 enrollment criteria

Locomotor Training in Individuals With Incomplete Spinal Cord Injury. A Pilot Study

Incomplete Spinal Cord Injury

Background: In Switzerland, about 6000 individuals live with the consequences of a spinal cord injury (Brinkhof et al, 2016). One of the major goals after an incomplete spinal cord injury (iSCI) is to regain walking function. To this end, different approaches are used in rehabilitation such as treadmill-based, robotic-assisted (exoskeleton or end-effector) and conventional gait training. According to current literature, the superiority of one of these approaches remains unclear (Mehrholz, Harvey, Thomas, and Elsner, 2017); In the research on gait rehabilitation after iSCI, recent randomized clinical trials (RCTs) found no statistical differences between conventional gait training and robotic-assisted gait training. Nevertheless, according to the comparison of effect sizes obtained from these training, these trials suggested that the conventional training approach leads to larger improvements in gait capacity when compared to robotic-assisted therapy (Field-Fote and Roach, 2011; Nooijen, Ter Hoeve, and Field-Fote, 2009). Therefore, these trials highly recommended further research considering these aspects. However, in clinical settings, the implementation of such systematic and intense training sessions remains challenging. The present study aims to test the hypothesis that conventional training might have larger effect sizes on gait capacity and to evaluate the feasibility of such systematic training in a clinical setting of inpatient rehabilitation. Objectives: To contribute to the current knowledge on best clinical practice in gait rehabilitation within the iSCI population. More specifically, the study objectives are two-fold: A first objective is to compare the effects of conventional training, end-effector based therapy and the combination of these interventions on the gait ability of iSCI. A second objective is the evaluation of the feasibility of systematic gait training protocols in a clinical setting. Participants: Individuals with motor incomplete spinal cord injury (iSCI), presenting a traumatic or non-traumatic iSCI with an injury onset <6 months. Intervention: Participants will be trained in one of the three groups by trained physical therapists during 10 sessions, 3x/week with an average duration of 30 minutes. Outcomes: To attain the first objective the effects will be quantified by the following main outcomes: Walking capacity (independence), walking speed, and safety. Feasibility of the systematic intervention will be evaluated using the drop-outs of therapy interventions.

Unknown status12 enrollment criteria
1...323324325...475

Need Help? Contact our team!


We'll reach out to this number within 24 hrs