search

Active clinical trials for "Insulin Resistance"

Results 101-110 of 1557

Promoting Immune Health by Intermittent Fasting: a Pilot Study

Metabolic SyndromeHEALTHY VOLUNTEERS3 more

The goal is to study the direct effects of long-term intermittent fasting on immune cell populations in the blood, combined with analyses of systemic metabolic fitness and inflammatory activation of leukocytes.

Recruiting27 enrollment criteria

Effect of Nocturnal Parenteral Nutrition on Bone Turnover and Energy Metabolism

Intestinal FailureOsteoporosis1 more

This clinical trial will study the effect of daytime versus nighttime parenteral nutrition on bone turnover, glucose variability, nitrogen balance, sleep and wake rhythm and peripheral clock gene expression in patients with chronic intestinal failure.

Recruiting11 enrollment criteria

Precision Nutrition and Metabolic Function

ObesityInsulin Resistance

The purposes of this study are: 1) to determine the mechanisms responsible for the development of cardiometabolic complications in some, but not all people with obesity; 2) determine the best dietary approach for cardiometabolic health; and 3) understand why some people have a stable metabolic phenotype over time whereas cardiometabolic health improves or worsens in others.

Recruiting21 enrollment criteria

Is Brain Insulin Resistance a Feature of the Biology of Depression in Adolescents

Major Depressive DisorderDepression

This study will examine if brain insulin resistance is a feature of depression in humans using magnetic resonance imaging (MRI) measures sensitive to brain insulin action. This study will examine adolescents, as depression onset commonly occurs during this age, and the impacts of cumulative medication exposure and other lifestyle-related confounds are also lower in this age group, improving our ability to understand the underlying biology.

Recruiting15 enrollment criteria

Dynamic Connectivity Under Metabolic Constraints

Insulin ResistanceHealthy2 more

In this study, we investigate the impact of insulin resistance on the acceleration of brain aging, and test whether increased neuron insulin resistance can be counteracted by utilization of alternate metabolic pathways (e.g., ketones rather than glucose). This study has three Arms, which together provide synergistic data. For all three Arms, subjects are tested in a within-subjects design that consists of 2-3 testing sessions, 1-14 days apart, and counter-balanced for order. During each session we measure the impact of fuel (glucose in one session, ketones in the other) on brain metabolism and associated functioning. For Arms 1-2, our primary experimental measure is functional magnetic resonance imaging (fMRI), which we will use to trace the self-organization of functional networks following changes in energy supply and demand. Arm 1 tests the impact of endogenous ketones produced by switching to a low carbohydrate diet, while Arm 2 tests the impact of exogenous ketones consumed as a nutritional supplement. For Arm 3, we use simultaneous magnetic resonance spectroscopy/positron-emission tomography (MR/PET) to quantify the impact of exogenous ketones on production of glutamate and GABA, key neurotransmitters. Subjects will be given the option to participate in more than one of the Arms, but doing so is not expected nor required. Prior to scans, subjects will receive a clinician-administered History and Physical (H&P), which includes vital signs, an oral glucose tolerance test (OGTT), and the comprehensive metabolic blood panel. These will be used to assess diabetes, kidney disease, and electrolytes. If subjects pass screening, they will be provided the option to participate in one or more Arms, which include neuroimaging. To provide a quantitative measure of time-varying metabolic activity throughout the scan, based upon quantitative models of glucose and ketone regulation, as well as to be able to implement safety stopping rules (see below), we will obtain pin-prick blood samples three times: prior to the scan, following consumption of the glucose or ketone drink, and following completion of the scan. To assess effects of increased metabolic demand, we measure brain response to cognitive load, transitioning from resting-state to spatial reasoning through a Tetris task. To assess effects of increased metabolic supply, we measure brain response to glucose or ketone bolus.

Recruiting14 enrollment criteria

Cancer-associated Muscle Mass - Molecular Factors and Exercise Mechanisms

CachexiaNeoplasms17 more

Muscle mass loss is a common adverse effect of cancer. Muscle mass loss occurs with or without reduction in body weight. Cancer cachexia (CC) is the involuntary loss of body weight of >5% within 6 months and it occurs in 50-80% of patients with metastatic cancer. It is estimated that CC is a direct cause of up to 30% of all cancer-related deaths. No treatment currently is available to prevent CC, likely because the chemical reactions that causes of this devastating phenomenon in unknown. No treatment currently is available to prevent muscle mass loss in patients with cancer but is urgently needed as the reduced muscle mass and function is associated with impaired physical function, reduced tolerance to anticancer therapy, poor quality of life (QoL), and reduced survival. There is evidence of an interdependence between informal caregiver (e.g. spouse) and patient QoL. Thus, identifying caregiver distress and needs can potentially benefit QoL for patients with cancer cachexia. Despite the enormous impact on disease outcomes, it is not known why the loss of muscle mass and function occurs and very few studies have investigated the underlying molecular causes in humans. In particular, there is a severe lack of studies that have obtained human skeletal muscle and adipose tissue sample material. Such reference sample materials will be invaluable to obtaining in-depth molecular information about the underlying molecular causes of the involuntary but common muscle mass and fat mass loss in cancer. At a whole body level, cancer cachexia is associated with reduced sensitivity to the hormone insulin, high levels of lipids in the blood, and inflammation. Within the skeletal muscle, the muscle mass loss is associated with elevated protein breakdown and reduced protein build-up while emerging, yet, limited data also suggest malfunction of the power plants of the cells called mitochondrions. The role of malnutrition and how it contributes to weight loss is understood only to the extent of the observed loss of appetite and the reduced food intake because of pain, nausea, candidiasis of the mouth, and breathlessness. Evidence is increasing that the environment of the intestinal system could be implicated in cancer cachexia, yet, the possible effect of cancer and the cancer treatment on the intestinal environment is not understood. Thus, large and as yet poorly understood details of this syndrome precede a later weight loss. Exercise training could help restore muscle function and how the chemical reactions works in cancer. In healthy people, and patients with diabetes, cardiovascular disease, and obesity exercise potently improves health. Exercise has been thought to slow down the unwanted effects of cancer cachexia by changing the reactions mentioned above. Thus, there is a tremendous gap in our knowledge of how and if exercise can restore the cells power plants function, muscle mass, strength, and hormone sensitivity in human cachexic skeletal muscle. Tackling that problem and examining potential mechanisms, will enable us to harness the benefits of exercise for optimizing the treatment of patients with cancer. The data will provide novel clinical knowledge on cachexia in cancer and therefore addressing a fundamental societal problem. Three specific aims will be addressed in corresponding work packages (WPs): investigate the involvement of hormone sensitivity of insulin and measure the chemical reactions between the cells in patients with lung cancer (NSCLC) and describe the physical performance and measure amount of e.g. muscles and adipose tissue across the 1st type of cancer treatment and understand how that is related to the disease and how patients and informal caregiver feel (WP1). find changes in the chemical reactions in skeletal muscle, adipose tissue (AT), and blood samples in these patients, to understand how to predict how the disease will develop (WP2). measure changes of skeletal muscle tissue in response to exercise and see if it might reverse the hormone insensitivity and improve muscle signaling and function (WP3). The investigators believe that: the majority of patients with advanced lung cancer, at the time of diagnosis already are in a cachectic state, where they lose appetite, and have hormonal changes, and an overall altered chemical actions between the cells affecting both muscle mass and AT. The investigators propose that all this can predict how the disease will progress, and how patient- and informal caregiver fell and how they rate their quality of life. lung cancer and the treatment thereof is linked with changes in the blood, the muscle tissues, and the adipose tissues, especially in patients experiencing cachexia, that could be targeted to develop new treatment. exercise can restore the muscles and improve insulin sensitivity and improve the function of the cells power plants in patients with lung cancer-associated muscle problems.

Recruiting22 enrollment criteria

Fructose: Substrate, Stimulus, or Both?

Insulin ResistanceInsulin Sensitivity1 more

This objective of this study is to use sensitive methodology under controlled conditions to investigate the mechanisms by which fructose consumption contributes to excess fatty acid synthesis and elevations in blood glucose levels following consumption of meals containing fructose.

Recruiting13 enrollment criteria

Low Dose Fat-Induced Insulin Resistance

Diabetes MellitusType 22 more

The primary goal of this study is to determine the dose of fatty acids that acutely induces mild insulin resistance in healthy volunteers. We hypothesize that a low-dose of fatty acid infusion (Intralipid/heparin) will cause a mild insulin resistance. The dose of fatty acid infusion that reliably causes mild insulin resistance will be selected for use in future studies.

Recruiting24 enrollment criteria

Dissecting the IMpact of 11-OXygenated and Classic Androgens on Skeletal Muscle Insulin Sensitivity...

Polycystic Ovary SyndromeInsulin Resistance2 more

Androgen excess is the cardinal biochemical feature of polycystic ovary syndrome (PCOS). Serum testosterone correlates with insulin resistance in PCOS, however, there is an urgent need to improve our understanding of the association between androgens and the risk of type 2 diabetes. 11-oxygenated steroids are the predominant androgens in PCOS and correlate closely with markers of insulin resistance. The bioactive 11-oxygenated androgen 11-ketotestosterone (11KT) binds and activates the androgen receptor with equal affinity to testosterone, yet nothing is known about its impact on metabolism or glucose homeostasis Crucially, there are no data linking androgen excess with muscle glucose metabolism and the differential contribution of 11-oxygenated androgens to diabetes risk through these processes remains unknown. The investigators hypothesise the following: Oral androgen exposure in women with PCOS results in distinct changes in tissue-specific insulin sensitivity and muscle energy biogenesis 11-oxygenated androgen exposure exerts differential changes on the above parameters in comparison to classic androgen exposure The study has the following aims: To examine the impact of oral androgen exposure on skeletal muscle insulin sensitivity and glucose disposal in women with PCOS. To delineate the impact of androgen exposure on muscle mitochondrial function ex vivo in women with PCOS To compare the differential impact of 11-oxygenated androgen compared to classic androgens on glucose disposal and muscle mitochondrial function The two arms will run in parallel and all participants will undergo identical investigations before and after 7 days of either DHEA or 11KA4. Investigations will include baseline arthrometric measurements muscle biopsy, two-step hyperinsulinaemic euglycaemic clamp, breath sampling. This interventional metabolic phenotyping study will probe the role of classic and 11-oxygenated androgens in metabolic dysfunction in PCOS using gold-standard in vivo metabolic phenotyping techniques. Delineating the distinct contribution of 11-oxygenated androgens, through effects on skeletal muscle biology, to the risk of T2DM is an important step in the process of determining risk of type 2 diabetes in this vulnerable cohort.

Recruiting16 enrollment criteria

Insulin Sensitivity After Breast Cancer

Insulin Sensitivity/ResistanceBreast Cancer2 more

Epidemiological studies have revealed that 60-80% of women with breast cancer (BC) develop metabolic disorders that are similar to those observed in conditions like type 2 diabetes. These metabolic disorders, including insulin resistance, obesity, hyperinsulinemia, and glucose intolerance, are associated with increased BC recurrence and mortality. Skeletal muscle is the major site of glucose uptake in humans. The aims of the present project are to 1) determine the involvement of insulin resistance in skeletal muscle in the metabolic disorders prevalent in BC survivors, 2) identify BC-and/or treatment-induced molecular changes in skeletal muscle from BC survivors .

Recruiting9 enrollment criteria
1...101112...156

Need Help? Contact our team!


We'll reach out to this number within 24 hrs