Ibrutinib in Treating Patients With Relapsed or Refractory B-cell Acute Lymphoblastic Leukemia
Adult B Acute Lymphoblastic LeukemiaAdult B Acute Lymphoblastic Leukemia With t(9;22)(q34;q11.2); BCR-ABL11 moreThis phase II trial studies how well ibrutinib works in treating patients with B-cell acute lymphoblastic leukemia that has come back after treatment or has not responded to other treatment. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
Blinatumomab Versus Standard of Care Chemotherapy in Patients With Relapsed or Refractory Acute...
Relapsed/Refractory B-precursor Acute Lymphoblastic LeukemiaThe primary objective was to evaluate the effect of blinatumomab on overall survival when compared to standard of care (SOC) chemotherapy.
Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection...
Adult B Acute Lymphoblastic LeukemiaChronic Lymphocytic Leukemia27 moreThis phase I trial studies the side effects and best dose of ibrutinib in treating B-cell non-Hodgkin lymphoma that has returned or does not respond to treatment in patients with human immunodeficiency virus (HIV) infection. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether it is safe for patients with HIV infection to receive ibrutinib while also taking anti-HIV drugs.
Lenalidomide as Chemoprevention in Treating Patients With High-Risk, Early-Stage B-Cell Chronic...
B-cell Chronic Lymphocytic LeukemiaChronic Lymphocytic Leukemia3 moreThis clinical trial studies lenalidomide as chemoprevention in treating patients with high-risk, early stage B-cell chronic lymphocytic leukemia (B-CLL). Chemoprevention is the use of certain drugs to keep cancer from forming. The use of lenalidomide may slow disease progression in patients with early stage B-cell chronic lymphocytic leukemia
Study of Moxetumomab Pasudotox in Patients With Relapsed and/or Refractory Acute Lymphoblastic Leukemia...
LeukemiaThe goal of this clinical research study is to find the highest tolerable dose of moxetumomab pasudotox that can be given to patients with relapsed and/or refractory ALL.
Revlimid® as Consolidation Treatment Chronic Lymphocytic Leukemia
Chronic Lymphocytic LeukemiaThe purpose of this study is to determine whether on course (6 cycles) of consolidation therapy with Revlimid can shrink or slow the growth of Chronic Lymphocytic Leukemia (CLL) in the bone marrow.
Phase I Dose Escalation Study of IMMU-114 in Relapsed or Refractory NHL and CLL
Non-hodgkin's LymphomaFollicular Lymphoma4 moreIMMU-114 will be studied at different dose schedules and dose levels in order to assess the highest dose safely tolerated. IMMU-114 will be administered subcutaneously (under the skin). IMMU-114 will be given 1-2 times weekly for 3 weeks followed by one week of rest. This is considered one cycle. Treatment cycles will be repeated until toxicity or worsening of disease.
Phase I Study of Milatuzumab for Graft Versus Host Disease
GVHD (Acute or Chronic)Acute Myeloid or Lymphoblastic Leukemia (AML or ALL)5 moreThis study will assess the safety and tolerability of milatuzumab (IMMU-115) when added to a standard regimen to prevent Graft vs. Host Disease (GVHD) in patients with hematologic malignancies undergoing stem cell transplant.
CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory...
B-cell Adult Acute Lymphoblastic LeukemiaB-cell Chronic Lymphocytic Leukemia25 moreThis phase I trial studies the side effects and best dose of CPI-613 (6,8-bis[benzylthio]octanoic acid) when given together with bendamustine hydrochloride and rituximab in treating patients with B-cell non-Hodgkin lymphoma that has come back or has not responded to treatment. Drugs used in chemotherapy, such as 6,8-bis(benzylthio)octanoic acid and bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may find cancer cells and help kill them. Giving 6,8-bis(benzylthio)octanoic acid with bendamustine hydrochloride and rituximab may kill more cancer cells.
Pilot Study of Radiation-Enhanced Allogeneic Cell Therapy for Progressive Hematologic Malignancy...
Hodgkin's LymphomaNon-Hodgkin's Lymphoma2 moreBackground: Allogeneic hematopoietic stem cell transplantation (allotransplant) has been used to treat many kinds of cancer that develop in cells from the blood or immune system. After allotransplant, donor cells take over production of the recipient s blood and immune cells, and donor immune cells can directly attack and control tumor. However, for cancers that do not respond to allotransplant, there are no proven cures. A single treatment with radiation can improve the potency of immune-cell therapies. This is probably because the tumor tissue is damaged in a way that new tumor proteins are exposed, attracting immune cells to the tumor. By giving only a single dose of radiation, the immune cells that are attracted to the tumor are allowed to survive and function in their usual way, traveling throughout the body and educating other immune cells to recognize tumor, and to activate and expand in order to kill the tumor cells. Some research has shown that radiation may have a widespread effect on stimulating the immune system, educating immune cells to recognize and control tumors that have not been radiated. Objectives: - To determine whether a single treatment of radiation will help donor immune cells control cancer after allotransplant without causing excessive side effects. Eligibility: Recipients: Individuals 18 years of age and older who have blood cancers that have not responded to allotransplant. Donors: Healthy individuals 18 years of age and older who were previous allotransplant donors for one of the study recipients. Design: Donors will provide additional blood immune cells, called lymphocytes, through apheresis. Apheresis involves drawing blood, separating out the lymphocytes, and returning the rest of the blood to the donor. Recipients will receive a single dose of radiation to the greatest amount of tumor that can be irradiated safely. Researchers will intentionally leave some tumor that will not be radiated in order to evaluate whether there is a widespread response to the treatment. There are two treatment arms on the study. Arm 1: Study participants who have donor lymphocytes available and who have not had major complications from the allotransplant will be given a dose of donor cells after they receive radiation, to provide an additional boost to the donor immune response. Arm 2: Study participants who cannot receive donor lymphocytes because their donor is not available, they received an allotransplant from a partially matched relative, or they have had significant complications from the allotransplant - will receive radiation without additional donor lymphocytes. All recipients will be followed closely for side effects and for tumor response to radiation with or without donor lymphocytes. Additional tests will be performed, including tumor biopsies, bone marrow samples, and blood draws, in order to study the immune effects of radiation and donor lymphocytes. A separate, control group of allotransplant recipients will not receive radiation. This group will include participants whose transplant doctors plan to use donor lymphocyte therapy alone to control cancer progression. This group will donate blood immune cells through blood draws and apheresis. These cells will be examined to study the immune effects of receiving donor lymphocytes without radiation.