Imetelstat Sodium in Treating Young Patients With Refractory or Recurrent Solid Tumors or Lymphoma...
Brain and Central Nervous System TumorsLymphoma4 moreRATIONALE: Imetelstat sodium may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I clinical trial is studying the side effects and best dose of imetelstat sodium in treating young patients with refractory or recurrent solid tumors or lymphoma.
Olaparib and Temozolomide in Treating Patients With Relapsed Glioblastoma
Brain and Central Nervous System TumorsRATIONALE: Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Olaparib may help temozolomide kill more tumor cells by making tumor cells more sensitive to the drug. PURPOSE: This phase I trial is studying the side effects and best dose of olaparib and temozolomide in treating patients with relapsed glioblastoma.
Iodine I 131 Monoclonal Antibody 3F8 in Treating Patients With Central Nervous System Cancer or...
Brain and Central Nervous System TumorsIntraocular Melanoma8 moreRATIONALE: Radiolabeled monoclonal antibodies, such as iodine I 131 monoclonal antibody 3F8, can find tumor cells and carry tumor-killing substances to them without harming normal cells. This may be an effective treatment for central nervous system cancer or leptomeningeal metastases. PURPOSE: This phase II trial is studying the side effects and how well iodine I 131 monoclonal antibody 3F8 works in treating patients with central nervous system cancer or leptomeningeal cancer.
Tetra-O-Methyl Nordihydroguaiaretic Acid in Treating Patients With Recurrent High-Grade Glioma
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy, such as tetra-O-methyl nordihydroguaiaretic acid (EM-1421), work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I/II trial is studying the side effects and best dose of EM-1421 and to see how well it works in treating patients with recurrent high-grade glioma.
Clinical Studies of Gemcitabine-Oxaliplatin
MedulloblastomaCentral Nervous System Tumors2 moreThese are Phase 2 single-arm studies of gemcitabine in combination with oxaliplatin in refractory or relapsing pediatric solid tumors.
Temozolomide in Treating Patients With Recurrent Glioblastoma Multiforme or Other Malignant Glioma...
Brain and Central Nervous System TumorsRATIONALE: Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well temozolomide works in treating patients with recurrent glioblastoma multiforme or other malignant glioma.
Bevacizumab in Treating Patients With Recurrent or Progressive Glioma
Brain and Central Nervous System TumorsRATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well bevacizumab works in treating patients with recurrent or progressive glioma.
Cellular Adoptive Immunotherapy in Treating Patients With Glioblastoma Multiforme
Brain and Central Nervous System TumorsRATIONALE: Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop tumor cells from growing. Aldesleukin may stimulate the white blood cells, including lymphokine-activated killer cells, to kill tumor cells. Giving cellular adoptive immunotherapy during or after surgery may kill more tumor cells. PURPOSE: This phase II trial is studying how well cellular adoptive immunotherapy works in treating patients with glioblastoma multiforme.
Vinblastine and Carboplatin in Treating Young Patients With Newly Diagnosed or Recurrent Low-Grade...
Brain and Central Nervous System TumorsNeurofibromatosis Type 1RATIONALE: Drugs used in chemotherapy, such as vinblastine and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of vinblastine when given together with carboplatin in treating young patients with newly diagnosed or recurrent low-grade glioma.
Radiation Therapy or Combination Chemotherapy in Treating Patients With Clinically or Radiologically...
Primary Central Nervous System NeoplasmsRATIONALE: Radiation therapy uses high-energy x-rays to kill tumor cells. Drugs used in chemotherapy, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This clinical trial is studying giving radiation therapy or combination chemotherapy to see how well it works in treating patients with clinically or radiologically progressive low-grade gliomas.