Time-motion-mode Ultrasound Diaphragm Measures in Patients With Acute Respiratory Distress in Emergency...
Respiratory Distress SyndromeAdultThe main objective of this study is to show that "diaphragmatic excursion measures upon emergency admission" (CDA values) on patients with acute respiratory failure are predictive of the need to use mechanical ventilation (invasive or non-) in the first four hours.
Airway Pressure Release Ventilation (APRV) Versus AC/VC Conventional Ventilation
Respiratory FailureAcute Lung Injury (ALI)1 moreAPRV mode of ventilation will result in an improved partial pressure of arterial oxygenation/ fraction of inspired oxygen (P/F ratio) on day 3 of mechanical ventilation. Sub hypotheses: APRV will be associated with a reduced amount of sedation used during the ICU stay in patients with respiratory failure. APRV will be associated with a reduction in the amount of vasoactive medication used for blood pressure support in patients with respiratory failure.
Recruitment on Extravascular Lung Water in Acute Respiratory Distress Syndrome (ARDS)
Acute Respiratory Distress SyndromeAcute Lung InjuryThe purpose of this study is to investigate the change of extravascular lung water (EVLW), cytokine and oxygenation parameters in patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS) after alveolar recruitment maneuver.
Adaptive Support Ventilation in Acute Respiratory Distress Syndrome (ARDS)
RespirationArtificial2 moreProspective randomized controlled trial to be conducted in the Respiratory Intensive Care Unit (RICU) of Post Graduate Institute of Medical Education And Research (PGIMER),Chandigarh. The study is approved by the Institute Ethics committee. In view of lack of previous outcome data in such patients, all patients requiring RICU admission for acute respiratory distress syndrome(ARDS) between January 2010 and June 2011 are being enrolled in this pilot study. The patients meeting the aforementioned criteria will randomly assigned to ventilation with assist control mode ventilation (ACMV group) as per the ARDSnet strategy or adaptive support ventilation (ASV group). Being the first RCT of its type, patients will be first stabilized on ACMV for 1 hour to determine the adequate minute ventilation. The randomization sequence will be computer generated. The assignments will placed in sealed opaque envelopes and each patient's assignment was made on admission to the RICU by the attending physician. Blinding of treatment is not possible. All patients will be ventilated only by Galileo Gold ventilators (Hamilton medical systems, Bonaduz, Switzerland). Patients randomized to the ACMV group will be ventilated according to low tidal volume strategy of 6ml/kg with Fio2/PEEP as per ARDSnet table to achieve a saturation between 88-95% with the lowest possible Fio2 to maintain plateau pressures < 30 cms H2o and PH > 7.3 with option to reduce tidal volume to 4 ml/kg and increase respiratory rate to 35/ min to achieve the above said goals11.These patients will be weaned as per standard protocol of spontaneous breathing trial of 30 minutes once they are recognized eligible as per statement of the sixth International consensus conference on weaning.
Use of the Hattler Respiratory Assist Catheter in Severe Respiratory Failure
EmphysemaAcute Respiratory Distress Syndrome3 moreA new artificial lung device has been developed that potentially provides added support to mechanical ventilation for severely damaged lungs. The Hattler Respiratory Assist Catheter is designed to provide gas exchange (deliver oxygen and remove carbon dioxide) for a period of up to 7 days, providing more time for the lungs to improve. Extrapolating from large animal data, the hypothesis is that the Hattler Catheter will be capable of providing 30% to 40% of the basal requirements of carbon dioxide exchange in a manner that is dependable and reproducible.
Pulmonary Vascular Effects of Respiratory Rate & Carbon Dioxide
Low Tidal Volume VentilationAcute Respiratory Distress SyndromeThe purpose of this protocol is to perform serial physiological measurements and blood testing on mechanically ventilated patients comparing conditions of eucapnia and hypercapnia in the same patient. We will be testing two hypotheses: (1) while administering inspired carbon dioxide (CO2), eucapnia achieved by high respiratory rate (EHR) significantly decreases pulmonary artery pressures compared to hypercapnia with a lower respiratory rate (HLR), and (2) that EHR decreases myocardial strain compared to HLR.
Study on the Effects of Different Premedication for LISA on Stress and Cerebral Tissue Oxygenation...
Respiratory Distress SyndromeSurfactant Deficiency Syndrome Neonatal1 moreGiven the popularity that LISA technique has gainig in worldwide neonatal units, the lack of evidence regarding its premedication is becoming even more relevant to provide the best care to premature infants. Objective of this clinical trial is to establish the best premedication for LISA procedure considering neonatal pain assessed with premature infants pain scale, salivary cortisol levels as an indicator of stress and crSO2 values as indicators of cerebral oxygenation. Moreover, we aim to verify if sucrose 24% given orally is an effective tool for pain management in preterm neonates also in more invasive procedure, comparable to pharmacological treatment.
Palliative Use of High-flow Oxygen Nasal Cannula in End-of-life Lung Disease Patients
Lung DiseaseAcute Respiratory Distress SyndromeThe prevalence of severe dyspnoea among terminally ill patients has been reported as 70% and 90% for lung cancer and chronic obstructive pulmonary disease (COPD) patients, respectively. Current management to dyspnoea includes opioids, psychotropic drugs, inhaled frusemide, Heliox 28 and oxygen. Conventional oxygen supplementation is often used in these patients, but it may be inadequate, especially if they require high flows (from 30L/min to 120L/min in acute respiratory failure). High-flow oxygen nasal cannula (HFONC) is a new technological device in high-flow oxygen system that consists of an air-oxygen blender (allowing from 21% to 100% FiO2) which generates the gas flow rate up to 55 L/min and a heated humidification system. This technology may have an important role in reducing respiratory distress in do-not-intubate patients. Some HFONC's beneficial effects are the washout of the nasopharyngeal dead space reducing rebreathing of CO2 and improvement oxygenation through greater alveolar oxygen concentration; a better matching between patient's inspiratory demand and oxygen flow; generation of a certain level of positive pressure (PEEP) contributing to the pulmonary distending pressure and recruitment; improvement of lung and airway mucociliary clearance due to the heated and humidified oxygen; and patient's comfort because of the nasal interface allowing feeding and speech. The investigators hypothesize that patients supported with HFONC need less opioids to decrease dyspnoea.
Amphetamine Induced Adult Respiratory Distress Syndrome
BurnsAcute Lung Injury2 moreMethamphetamine and amphetamine has various cardiovascular and central nervous system effects. Long-term use is associated with many adverse health effects including cardiomyopathy, hemorrhagic, and ischemic stroke. Death is usually caused by cardiovascular collapse and while amphetamine abuse has been considered as a potential cause of acute respiratory distress syndrome, the reports are usually anecdotal. This investigation considers reviewing individuals with few to zero medical conditions who develop acute respiratory distress syndrome and are methamphetamine positive
Ventilation-Perfusion Matching in Early-stage Prone Position Ventilation
Acute Respiratory Distress SyndromeProne positioning has been widely used in critical care medicine to improve oxygenation in patients with acute respiratory distress syndrome (ARDS). This study aimed to compare the effect of pronation on lung ventilation-perfusion matching between COVID19-associated acute respiratory distress syndrome (CARDS) and ARDS from other etiologies (non-CARDS) using electrical impedance tomography (EIT).