search

Active clinical trials for "Dysphonia"

Results 31-40 of 105

The Effects of Adding Expiratory Muscle Strength Training in Voice Therapy

DysphoniaUnilateral Vocal Cord Paralysis

Evaluate if adding expiratory muscle strength training to traditional voice therapy for individuals with dysphonia due to glottal insufficiency improves maximal expiratory pressure, acoustic and aerodynamic measures (i.e. amplitude, maximum phonation time, peak expiratory flow), and voice related quality of life.

Not yet recruiting14 enrollment criteria

Sodium Oxybate in Spasmodic Dysphonia and Voice Tremor

Spasmodic DysphoniaVoice Tremor

Using a comprehensive approach of clinico-behavioral testing, neuroimaging and pharmacogenetics, the researchers will examine the clinical effects of sodium oxybate and the matched placebo on voice symptoms in spasmodic dysphonia and voice tremor.

Active18 enrollment criteria

Description of the Evolution of Functional Dysphonia Managed by Hypnotherapy

Functional Dystonia (Disorder)

HYPNODYS is a single-center study evaluating the evolution of perceived voice-related disability before and after 3 standardized hypnosis sessions in patients with functional dysphonia.

Recruiting7 enrollment criteria

Cortical Silent Period in Laryngeal Dystonia

Laryngeal DystoniaSpasmodic Dysphonia

The goal of this observational study is to evaluate the cortical silent period (cSP) in cricothyroid muscle (CT) in laryngeal dystonia and control healthy subjects. The study will provide norms related to latency and amplitude of motor evoked potentials (MEPs) and duration of cSP in CT muscle in laryngeal dystonia and control healthy subjects. Findings may give a baseline in comparison to findings in laryngeal diseases and insight into maladaptive cortical control function during phonation in laryngeal diseases like laryngeal dystonia.

Recruiting3 enrollment criteria

Deep Brain Stimulation for Laryngeal Dystonia: From Mechanism to Optimal Application

Laryngeal DystoniaAdductor Spastic Dysphonia of Dystonia

Deep Brain Stimulation (DBS) is a neurosurgical procedure used to treat tremors, and dystonia. This study will enroll people who have a form of focal dystonia that affects their vocal cords called Adductor Laryngeal dystonia (ADLD). Participants will undergo Deep Brain Stimulation surgery to treat laryngeal dystonia as part of their clinical care. Before surgery, as part of the study they will have specialized testing to study the movement of the vocal cords, as well as functional magnetic resonance imaging (fMRI). While in the operating room, researchers will examine brain waves to better understand how faulty brain firing patterns lead to dystonia. After surgery, and activation of the deep brain stimulator, participants will repeat speech testing and vocal cord imaging as well as magnetic resonance imaging (MRI).

Recruiting16 enrollment criteria

Artificial Intelligence and Benign Lesions of Vocal Folds Recognition

Dysphonia

The development of Artificial Intelligence (AI), the evolution of voice technology, progresses in audio signal analysis, and natural language processing/understanding methods have opened the way to numerous potential applications of voice, such as the identification of vocal biomarkers for diagnosis, classification or to enhance clinical practice. More recently, researches focused on the role of the audio signal of the voice as a signature of the pathogenic process. Dysphonia indicates that some negative changes have occurred in the voice production. The overall prevalence of dysphonia is approximately 1% even if the actual rates may be higher depending on the population studied and the definition of the specific voice disorder. Voice health may be assessed by several acoustic parameters. The relationship between voice pathology and acoustic voice features has been clinically established and confirmed both quantitatively and subjectively by speech experts. The automatic systems are designed to determine whether the sample belongs to a healthy subject or a non-healthy subject. The exactness of acoustic parameters is linked to the features used to estimate them for speech noise identification. Current voice searches are mostly restricted to basic questions even if with broad perspectives. The literature on vocal biomarkers of specific vocal fold diseases is anecdotal and related to functional vocal fold disorders or rare movement disorders of the larynx . The most common causes of dysphonia are the Benign Lesions of the Vocal Fold (BLVF). Currently, videolaryngostroboscopy, although invasive, is the gold standard for the diagnosis of BLVF. However, it is invasive and expensive procedure. The novel ML algorithms have recently improved the classification accuracy of selected features in target variables when compared to more conventional procedures thanks to the ability to combine and analyze large data-sets of voice features. Even if the majority of studies focus on the diagnosis of a disorder where they differentiate between healthy and non-healthy subjects, the investigators believe that the more important task is frequently differential diagnosis between two or more diseases. Even though this is a challenging task, it is of crucial importance to move decision support to this level. The main aim of this research would be the study, development, and validation of ML algorithms to recognize the different BVLVFL from digital voice recordings.

Recruiting10 enrollment criteria

Imaging Genetics of Laryngeal Dystonia

Laryngeal DystoniaUnaffected Relatives of Laryngeal Dystonia Patients2 more

The contribution of genetic risk factors to the development of focal dystonias is evident. However, understanding of how variations in the causative gene expression lead to variations in brain abnormalities in different phenotypes of dystonia (e.g., familial, sporadic) remains limited. The research program of the investigators is set to determine the relationship between brain changes and genetic risk factors in laryngeal dystonia (or spasmodic dysphonia). The researchers use a novel approach of combined imaging genetics, next-generation DNA sequencing, and clinical-behavioral testing. The use of a cross-disciplinary approach as a tool for the discovery of the mediating neural mechanisms that bridge the gap from DNA sequence to the pathophysiology of dystonia holds a promise for the understanding of the mechanistic aspects of brain function affected by risk gene variants, which can be used reliably for the discovery of associated genes and neural integrity markers for this disorder. The expected outcome of this study may lead to better clinical management of this disorder, including its improved detection, accurate diagnosis, and assessment of the risk of developing dystonia in family members.

Recruiting22 enrollment criteria

Assessment of Laryngopharyngeal Sensation: Cancer Survivor Cohort

PresbylarynxAspiration7 more

A previous study completed in 2022 (NCT05158179) was conducted using cohorts of healthy controls, and adults with general laryngopharyngeal disorders. This study will expand on the previous research to include a separate cohort of adults being seen in clinic for an existing laryngopharyngeal disorder resulting from previous radiation or other cancer treatments.

Not yet recruiting9 enrollment criteria

Quantifying Effects of Treatment of Pediatric Dysphonia

Voice DisordersGastroesophageal Reflux

The diagnosis and management of childhood dysphonia is a significant clinical problem; however, there have been few studies aimed at defining standard assessment methods for pediatric dysphonia. Accordingly, pediatric dysphonia is difficult to diagnose and it is difficult to quantify change following treatment. The long-term goal of this research program is to develop valid, responsive, reliable, and age-appropriate methods for assessing vocal pathology in children. In the present small grant, our objective is to define assessment methods that are appropriate for use in determining response to treatment. Our main focus, therefore, is the issue of assessment responsivity. The first specific aim is to develop a set of responsive measures of vocal pathology in school-aged children by inducing short-term change in vocal status via behavioral and medical management of extraesophageal reflux disease (EERD). Because we are treating children suspected of EERD, this study also presents the opportunity for examining the benefits of combined vocal hygiene and medical management in the treatment of pediatric EERD. Accordingly, our second specific aim is to determine predictive criteria for improvement in vocal status in dysphonic children suspected of EERD. Our hypothesis is that a particular set of measurements will emerge as particularly responsive to change in vocal pathology in this population, and will allow for informed prediction of degree of improvement with treatment. The proposed research is significant in filling a gap in knowledge in childhood dysphonia assessment and treatment, which are important clinical issues consistent with the mission and intent of the NIDCD. Because phonatory disorders in children may have lasting negative effects, studies geared toward accurate assessment and treatment are very important.

Terminated3 enrollment criteria

Effect of Vocal Exercise After Botulinum Toxin Injection for Spasmodic Dysphonia

Spasmodic DysphoniaDystonia

Studies have suggested that voluntary muscle exercise in the hand and face after botulinum toxin injection may enhance the clinical effects of the toxin. Exercise may speed up the absorption of the toxin by the nerves and enhance the clinical response. This study will explore the effect of exercise on botulinum toxin injections for spasmodic dysphonia (SD).

Terminated9 enrollment criteria
1...345...11

Need Help? Contact our team!


We'll reach out to this number within 24 hrs