Targeted HD-tDCS to Improve Upper Limb Rehabilitation in SCI
Spinal Cord InjuriesSpinal Cord DiseasesThe proposed project seeks to maximize the functional recovery achieved during the rehabilitation of the paretic upper limbs in individuals with SCI. The investigation will work towards optimizing the use of transcranial direct current stimulation (tDCS), an adjunct known to improve the effectiveness of rehabilitation. In particular, the relationship between the specificity of current delivery and functional benefit will be explored, and findings may lead to a framework that can be translated to the clinic setting.
ARC Therapy to Restore Hemodynamic Stability and Trunk Control in People With Spinal Cord Injury...
Spinal Cord InjuryOrthostatic HypotensionThe goal of this interventional study is to evaluate the safety and preliminary effectiveness of the ARC-IM Therapy to improve hemodynamic management in people with sub-acute or chronic spinal cord injury. Participants will be implanted with the ARC-IM Thoracic System which aim to deliver, at the low thoracic level, targeted epidural electrical stimulation that will support natural hemodynamic control.
FES and Upper Limb Loading Exercises Outcome Comparison on Hand Function in Spinal Cord Injury Patients...
Spinal Cord InjuriesThis study is conducted to assess the effectiveness of functional electrical stimulation Vs limb loading exercises on hand grip strength,dexterity and function in patients with subacute cervical spinal cord injury.
Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury
Spinal Cord InjuriesSpasticity6 morePeople with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
Improving Adherence to Spinal Cord Injury Exercise Guidelines Using Smartphone Technology and E-coaching...
Spinal Cord InjuriesThe goal of this research is to increase physical activity among individuals with a spinal cord injury (SCI) through a customized, interactive smartphone-based health app and e-coaching using three phases: (1) leading focus groups of potential app users and clinicians to gain information regarding health apps preferences for optimal consumer use, (2) conducting a usability study of the customized app to determine the quality and implement further changes for optimization, and (3) conducting a sequential multiple assignment randomized trial (SMART) to determine the most effective adaptive intervention to improve exercise adherence. A SMART trial will be used to determine when and how to adapt dosage, timing, and delivery to increase adherence and address low-response behaviors. In Stage-I, the investigators will compare outcomes among participants using a generic, non-interactive exercise app (Group 1) to a customized, interactive app that can gain information through frequent Ecological Momentary Assessments (EMA) that will be used to modify each participant's exercise programs (Group 2). After 12 weeks, participants who are not meeting the exercise guidelines at least 50% of the time will also be asked to participate in motivational interviewing-based e-coaching either two or four times per month in addition to their originally assigned intervention (Stage-II). By completing these three phases, this project addresses deficiencies in exercise levels and compliance by implementing an individualized exercise prescription, an adaptive intervention for low responders, a way to address barriers to exercise, and a free smartphone app for broad implementation.
Activating Spinal Circuits to Improve Walking, Balance, Strength, and Reduce Spasticity
Incomplete Spinal Cord InjurySpasticity1 moreFor many people with spinal cord injury (SCI), the goal of walking is a high priority. There are many approaches available to restore walking function after SCI; however, these approaches often involve extensive rehabilitation training and access to facilities, qualified staff, and advanced technology that make practicing walking at home difficult. For this reason, developing training approaches that could be easily performed in the home would be of great value. In addition, non-invasive spinal stimulation has the potential to increase the effectiveness of communication between the brain and spinal cord. Combining motor skill training (MST) with transcutaneous spinal stimulation (TSS) may further enhance the restoration of function in persons with SCI. Therefore, the purpose of this study is to determine if moderate-intensity, MST can improve walking-related outcomes among persons with SCI and to determine if the addition of non-invasive TSS will result in greater improvements in function compared to training alone.
Dosing of Overground Robotic Gait Training With Functional Outcomes and Neuroplasticity After Spinal...
Spinal Cord InjuriesThe DOOR SCI project examines dosing effects of robotic gait training (RGT) and transcranial magnetic stimulation (TMS) initiated during inpatient rehabilitation and continued through early outpatient rehabilitation
Effect of Electroacupuncture at Different Acupoints on Bladder Function After Spinal Cord Injury...
Neurogenic BladderNeurogenic bladder after spinal cord injury can be divided into detrusor hyperreflexia and detrusor non reflexia. Acupuncture is recognized as a safe and effective treatment. The most commonly used acupoints are Guanyuan, Zhongji and Sanyinjiao. The purpose of this study is to clarify the therapeutic effects of different acupoints on different types of bladder. Main process: routine urodynamic examination was performed first, and then electroacupuncture was given to Guanyuan, Zhongji and Sanyinjiao points respectively, and urodynamic examination was performed again to observe the effect of Electroacupuncture on urodynamic parameters in real time.
Pharmacological Agents for Chronic Spinal Cord Injury (SCI)
Spinal Cord InjuriesThe purpose of this study is to investigate the short-term effects of 3 approved FDA drugs (cyproheptadine (CPH), carbidopa-levodopa (CD-LD), and atomoxetine (ATX)) on motor responses when delivered in combination with hand training exercises in people with chronic spinal cord injury. The goal is to learn how to better strengthen connections between the brain and spinal cord after spinal cord injury, and if this connection is improved by one(or more) of the drugs. Multiple aspects of nerve transmission and muscle response will be measured via noninvasive brain and spinal cord stimulation, along with motor performance (dexterity and strength).
Autonomic Effects of Stimulation in SCI
Spinal Cord InjuryThis study aims to determine the effects of transcutaneous spinal cord stimulation to increase blood pressure and use that device to increase exercise endurance time and heart rate recovery during arm cycle ergometry. In addition, the investigators will see if the stimulation helps regulate body temperature when in a cool environment.