search

Active clinical trials for "Paresis"

Results 41-50 of 409

Synchronized Brain and Hand Stimulation After Stroke

StrokeUpper Extremity Paresis

Among the 795,000 individuals who sustain a stroke annually in the United States, 65% continue to experience moderate-to-severe impairments in one hand six months or more, which limits their ability to perform daily tasks. Currently there is dearth of understanding of the mechanisms of motor recovery after stroke. Understanding the mechanisms can potentially lead to the development of interventions to improve motor performance after stroke. The proposed study will examine how synchronously pairing brain and hand stimulation repeatedly affects the plasticity of the brain and motor performance after stroke. The knowledge gained from this study can be useful to develop interventions to improve hand movement after moderate-severe stroke.

Recruiting24 enrollment criteria

Trans Auricular Vagus Nerve Stimulation (taVNS) and Robotic Training for Paralyzed Arm After Stroke...

StrokeHemiparesis

To determine whether treatment with transauricular vagus nerve stimulation (taVNS) during the training of an affected upper limb of a patient with chronic stroke on a robotic motor task alters the motor impairment.

Recruiting17 enrollment criteria

tDCS + CCFES-mediated Functional Task Practice for Post-stroke Upper Extremity Hemiplegia

StrokeUpper Extremity Paresis1 more

After a stroke, it is very common to lose the ability to open the affected hand. Occupational and physical rehabilitation therapy (OT and PT) combined with non-invasive brain stimulation may help a person recover hand movement. The purpose of this study is to compare 3 non-invasive brain stimulation protocols combined with therapy to see if they result in different amounts of recovery of hand movement after a stroke.

Recruiting25 enrollment criteria

RGS@Home: Personalized 24/7 Home Care Post-stroke

Hemiparesis;Poststroke/CVAStroke4 more

Stroke represents one of the main causes of adult disability and will be one of the main contributors to the burden of disease in 2030. However, the healthcare systems are not able to respond to the current demand let alone its future increase. There is a need to deploy new approaches that advance current rehabilitation methods and enhance their efficiency. One of the latest approaches used for the rehabilitation of a wide range of deficits of the nervous system is based on virtual reality (VR) applications, which combine training scenarios with dedicated interface devices. Market drivers exist for new ICT based treatment solutions. IBEC/ Eodyne Systems has developed and commercialised the Rehabilitation Gaming System (RGS), a science-based ICT solution for neurorehabilitation combining brain theory, AI, cloud computing and virtual reality and targeting motor and cognitive recovery after stroke. RGS provides a continuum of evaluations and therapeutic solutions that accompany the patient from the clinic to the therapy centre. RGS has been clinically validated showing its superiority over other products while reducing cost also through its use of standard off-the-shelf hardware and a Software as a Service model (SaaS). Commercial evaluations have shown that RGS acts as a workforce multiplier while delivering a high quality of care at clinical centres (RGS@Clinic). However, in order to achieve significant benefits in the patients' QoL, it is essential that RGS becomes an at home solution providing 24/7 monitoring and care. For this reason, this project aims at investigating the RGS acceptability and adoption model. The findings derived from this study will contribute to establish a novel and superior neurorehabilitation paradigm that can accelerate the recovery of hemiparetic stroke patients. Besides the clinical impact, such achievement could have relevant socioeconomic impact.

Recruiting13 enrollment criteria

Motor Imagery BCI Rehabilitation After Stroke

StrokeHemiparesis

This research project will investigate motor imagery training in stroke rehabilitation during which patients receive feedback in real time from their brain activity measured with ElectroEncephaloGraphy (EEG). The investigators hypothesize that the feedback training allows to internally stimulate brain motor networks in order to promote functional recovery of the hand.

Recruiting11 enrollment criteria

Operant Conditioning of Reflex Pathways to Improve Walking in Individuals Post-stroke

StrokePost-stroke Hemiparesis1 more

The purpose of this study is to examine the changes in reflex pathways in the paretic ankle plantarflexors in individuals with post-stroke hemiparesis using operant conditioning. We are recruiting 5 individuals with chronic post-stroke hemiparesis with foot drop in the affected leg to participate in the reflex training procedure. The study involves 40 visits with a total study duration of about 4 months.

Recruiting9 enrollment criteria

Contextual Interference, Engagement , and Change in Motor Performance in Stroke

Hemiparesis;Poststroke/CVA

The aim of the study is to examine associations between contextual interference (CI), engagement during practice and changes in upper limb motor performance among patients post-stroke. Fifty patients over the age of 18, after a stroke, in the sub-acute and early chronic stages who have weakness of the upper extremity and are treated in a rehabilitation center will be recruited. The study will include participation in five sessions: session 1 for baseline assessment, session 2-4 for practice of upper extremity functions, and session 5 for post intervention assessment. The intervention will include training of three items from the Wolf motor function test in random order (high CI group) or block order (low CI group). Outcomes of engagement will include the brain engagement index, heart rate variability and galvanic skin response. Outcomes of learning will include the pre-post change in performance of the wolf motor function selected items.

Recruiting7 enrollment criteria

The Effect of Spasticity-correcting Hand Surgery for Spasticity Related Symptoms

SpasticityMuscle4 more

Spasticity - a variety of motor over-activity and part of the upper motor neuron syndrome - is a common cause of impaired motor function after brain injuries of different etiologies. In addition, it may cause pain and impaired hygiene, contractures, deformities etc. Spasticity has been reported in 30 to 90% of patients with stroke, traumatic brain injury (TBI), incomplete spinal cord injury (SCI) and cerebral palsy (CP). Spasticity therapy has emerged as an important approach to alleviate related symptoms. Positive effects on spasticity are well recognized following systemic and intra-thecal pharmacological treatment, as well as after intra-muscularly injected substances; the effect of the latter is, however, of limited duration. While pharmacological spasticity therapy has been applied for decades, surgical procedures remain fairly uncommon in adults with spasticity, but not in pediatric patients with CP, and outcomes after surgical treatment are scarcely described in the literature. The study center is a specialized unit initially focused on reconstructive as well as spasticity reducing surgery in the upper extremities for SCI patients. Subsequently, patients with spasticity also due to various other Central nervous system diseases have been referred to the center for surgical treatment. Studies describing the effect of spasticity-reducing surgery in the upper extremities are rare and the group is heterogeneous. The aim of the study is therefore to evaluate the results and compare against todays golden standard treatment (boutuliniumtoxin injections).

Enrolling by invitation2 enrollment criteria

NMES Role to Prevent Respiratory Muscle Weakness in Critically Ill Patients and Its Association...

Muscle Weakness or AtrophyMechanical Ventilation Complication1 more

Particularly, muscle respiratory wasting will occur early (18 to 69 hours) in up to 60% of patients with mechanical ventilation (MV), leading rapidly to diaphragmatic weakness, which is associated with prolonged MV use, longer ICU and hospital stay, and higher mortality risk. Sepsis and muscle inactivity, derived from sedation and MV use, are key driver mechanisms for developing these consequences, which can be avoided through early physical activation. However, exercise is limited at the early stages of care, where sedation and MV are needed, delaying muscle activation. Neuromuscular electrical stimulation (NMES) represents an alternative to achieve early muscle contraction in non-cooperative patients, being able to prevent local muscle wasting and, according to some reports, has the potential to shorten the time on MV, suggesting a systemic effect through myokines, a diverse range of cytokines and chemokines secreted by myocytes during muscle contraction. However, no studies have evaluated whether NMES applied to peripheral muscles can exert distant muscle effects over the diaphragm, ameliorating its weakness and if this protective profile is associated with myokine's change in ICU patients. This proposal comprises a randomized controlled study of NMES applied twice daily, for three days, compared to standard care (no NMES). Thirty-two patients will be recruited in the first 48 hours after MV and randomly assigned to the control group or NMES group (16 subjects each). Muscle characterization of quadriceps and diaphragm will be performed at baseline (Day 1, before the first NMES session) and after the last NMES session (morning of day 4). Myokine measurements [IL-1, IL-6, IL-15, Brain-Derived Neurotrophic Factor (BDNF), Myostatin and Decorin], through blood serum obtained from peripheric blood samples, will be performed just before starting NMES (T0) at the end of the session (T0.5), and 2 and 6 hours later (T2 and T6). These myokine curves will be repeated on days 1 and 3 at the first NMES session of the day. The Control group will be assessed in the same way and timing, except that blood samples will be at T0 and T6. Additionally, functional outcomes such as MV time and ICU length of stay will be registered for all patients at ICU discharge. Standard care won´t be altered.

Recruiting15 enrollment criteria

Transforming Robot-mediated Telerehabilitation: Citizen Science for Rehabilitation

HemiparesisStroke

The purpose of this study is to advance upper limb robot-mediated tele-rehabilitation for patients recovering from stroke by empowering them through active science participation. By varying the tasks' features and affordances of a platform that combines a low-cost haptic device on one hand, and an online citizen science platform on the other, investigators will evaluate different strategies for social telerehabilitation. the two fundamental modes of social interaction - competition and cooperation - in addition to a control condition. Specifically, citizen science activities will be performed by competing, cooperating, or isolated users, and their rehabilitation effectiveness examined. Such effectiveness will be measured by (i) participants' rehabilitation performance (inferred from sensorimotor data acquired through the platform and directly quantified by a supervising therapist); (ii) participants' motivations to contribute (measured through surveys administered online); and (iii) participants' emotional well-being and sense of self-esteem (measured through online surveys).

Recruiting15 enrollment criteria
1...456...41

Need Help? Contact our team!


We'll reach out to this number within 24 hrs