search

Active clinical trials for "Ventilator-Induced Lung Injury"

Results 1-10 of 67

Electrical Activity of the Diaphragm and Respiratory Mechanics During NAVA

Work of BreathingLung Transplantation2 more

Protective ventilatory strategy should be applied to reduce both ventilator-induced lung injury (VILI) and ventilator-induced diaphragm dysfunction (VIDD) after Lung Transplantation (LTx). Neurally Adjusted Ventilatory Assist (NAVA) is an assisted ventilation mode in which respiratory support is coordinated by the electrical activity of the diaphragm (EAdi). Aim of the study is to assess the physiological relationship between neural respiratory drive as assessed by EAdi and tidal volume, driving pressure and mechanical power, at different levels of ventilatory assist, in the absence of pulmonary vagal afferent feedback.

Recruiting12 enrollment criteria

Mechanical Ventilation in Patients With Lung Impairment Controlled by the Mechanical Energy of the...

ARDSLung Injury1 more

A project aimed at expanding the monitoring of mechanical energy (ME) in patients on mechanical ventilation (MV), with the aim of contributing to reducing the influence of the device for mechanical ventilation of patients on the lung parenchyma by setting parameters that will lead to lower ventilation energy. According to the parameters set on the device for mechanical ventilation, the mechanical energy will be calculated, which the physician in the interventional arm of the study will be able to use to change the mechanical ventilation settings. The physician will follow the best clinical practice, and in the non-intervention group, the MV setting will be conventional.

Recruiting6 enrollment criteria

Bilateral Bi-level Erector Spine Plane Block as a Component of General Anesthesia in Surgical Correction...

ScoliosisSpinal Deformity22 more

Improving the anesthesiology management for surgical correction of spinal deformations with introducing the diagnostic methods and treatment strategy of acute pain, preventing the evolution of chronic pain. Development and implementation in clinical practice perioperative intensive care protocols for surgical correction of spinal deformities.

Recruiting9 enrollment criteria

Evaluation of Regional Ventilation Distribution Using Electrical Impedance Tomography During Weaning...

Acute Respiratory FailureMechanical Ventilation Complication2 more

The goal of this physiological cross-over clinical trial is to evaluate the effect of different clinically used weaning trials on regional mechanical ventilation in a population of patients undergoing weaning from mechanical ventilation for acute respiratory failure. The main question[s] it aims to answer are: to evaluate which weaning trial is associated to a better regional ventilation distribution to evaluate which weaning trial can be comparable to ventilation distribution after extubation Participants will undergo 3 clinically used weaning trials in a random order (cross-over trial). Researchers will compare the different steps to see if regional ventilation distribution is different among the different trial .

Recruiting10 enrollment criteria

QT Distance and P Dispersion in ECG in Patients Having Bronchoscopy in the ICU

Ventilator-Induced Lung InjuryPulmonary Atelectasis

Fiberoptic bronchoscopy (FOB) is one of the most useful procedures for diagnosing and treating respiratory illnesses to figure out symptoms like hemoptysis, wheezing, or cough. Furthermore, FOB is a frequent method, in intensive care units, for both diagnoses of ventilator-associated pneumonia (VAP) and treatment of atelectasis with bedside sedation.) Propofol is often used in anesthesia for endoscopic treatments. Using propofol for deep anesthesia may be indicated to prevent the patient from feeling discomfort before FOB and to reduce the chance of complications. Although major complications of FOB such as hypoxia and pneumothorax are known, there are limited studies showing its effects on cardiac hemodynamics. The cardiac effects of laryngoscope and intubation were investigated by using different anesthetic agents. In this study, we evaluated the effect of bronchoscopy with BIS-controlled sedation on ECG in ICU patients by monitoring the QT interval and P interval.

Enrolling by invitation8 enrollment criteria

Assessing Ventilator Safety in Patients on Pressure-Support Ventilation

Acute Respiratory FailureMechanical Ventilation Complication1 more

ASOP is a prospective cohort study comparing three methods for assessing risk of self-induced lung injury in patients with acute respiratory failure being managed with pressure-support ventilation. We will describe the relationship between three different assessment methods for risk of self-induced lung injury and compare them to a gold standard measurement.

Recruiting9 enrollment criteria

Optimization of PEEP During Laparoscopic Surgery

Post-Op ComplicationVentilator-Induced Lung Injury

Lung-protective ventilation (LPV) during general anesthesia can trigger the development of early postoperative pulmonary complication (PPC) and ventilator associated lung injury. One of the proven components of the LPV is low tidal volume (TV). Data on the positive end-expiratory pressure (PEEP) parameters adjustment in laparoscopic surgery, as well as the effects on the respiratory biomechanics, lung tissue and respiratory muscles damage are limited and not clear. The objective of the study is to evaluate the ability of the esophageal pressure (Pes) based controlled personalized PEEP adjustment, to improve the biomechanics of the respiratory system and oxygenation due to laparoscopic cholecystectomy.

Recruiting9 enrollment criteria

Providing Optimal PEEP During Mechanical Ventilation for Obese Patients Using Esophageal Balloon...

ObesityMorbid2 more

This is a research study to determine if identifying an optimal level of positive end-expiratory pressure (PEEP) targeted specifically to individualized patient characteristics will shorten the time on the ventilator. Participants will have catheter placed through the nose into the esophagus to measure the pressure inside the chest. This catheter will remain until the patient is freed from the ventilator. Participants will be randomized to usual care or to have the level of PEEP determined by the esophageal balloon pressure readings. The total time spent on the ventilator will be recorded.

Enrolling by invitation11 enrollment criteria

Enhanced Lung Protective Ventilation With ECCO2R During ARDS

ARDSHuman1 more

Acute Respiratory Distress Syndrome (ARDS) is associated with a mortality rate of 30 - 45 % and required invasive mechanical ventilation (MV) in almost 85 % of patients[1]. During controlled MV, driving pressure (i.e., the difference between end-inspiratory and end-expiratory airway pressure) depends of both tidal volume and respiratory system compliance. Either excessive tidal volume or reduced lung aeration may increase the driving pressure. ARDS patients receiving tidal volume of 6 ml/kg predicted body weight (PBW) and having a day-1 driving pressure ≥ 14 cmH2O have an increased risk of death in the hospital[2]. Seemly, in the LUNG SAFE observational cohort, ARDS patients having a day-1 driving pressure < 11 cmH2O had the lowest risk of death in the hospital[1]. Hence, driving pressure acts as a major contributor of mortality in ARDS, and probably reflects excessive regional lung distension resulting in pro-inflammatory and fibrotic biological processes. Whether decreasing the driving pressure by an intervention change mortality remains an hypothesis; but one of means is to decrease the tidal volume from 6 to 4 ml/ kg predicted body weight (PBW). However, this strategy promotes hypercarbia, at constant respiratory rate, by decreasing the alveolar ventilation. In this setting, implementing an extracorporeal CO2 removal (ECCO2R) therapy prevents from hypercarbia. A number of low-flow ECCO2R devices are now available and some of those use renal replacement therapy (RRT) platform. The investigators previously reported that combining a membrane oxygenator (0.65 m²) within a hemofiltration circuit provides efficacious low flow ECCO2R and blood purification in patients presenting with both ARDS and Acute Kidney injury[3]. This study aims to investigate the efficacy of an original ECCO2R system combining a 0.67 m² membrane oxygenator (Lilliput 2, SORIN) inserted within a specific circuit (HP-X, BAXTER) and mounted on a RRT monitor (PrismafleX, BAXTER). Such a therapy only aims to provide decarboxylation but not blood purification and has the huge advantage to be potentially implemented in most ICUs without requiring a specific ECCO2R device. The study will consist in three periods: The first period will address the efficacy of this original ECCO2R system at tidal volume of 6 and 4 ml/kg PBW using an off-on-off design. The second part will investigate the effect of varying the sweep gas flow (0-2-4-6-8-10 l/min) and the mixture of the sweep gas (Air/O2) on the CO2 removal rate. The third part will compare three ventilatory strategies applied in a crossover design: Minimal distension: Tidal volume 4 ml/kg PBW and positive end-expiratory pressure (PEEP) based on the ARDSNet PEEP/FiO2 table (ARMA). Maximal recruitment: 4 ml/kg PBW and PEEP adjusted to maintain a plateau pressure between 23 - 25 cmH2O. Standard: Tidal volume 6 ml/kg and PEEP based on the ARDSNet PEEP/FiO2 table (ARMA).

Recruiting12 enrollment criteria

CT for Personalized Mechanical Ventilation

Ventilator-Induced Lung InjurySepsis Syndrome1 more

The goal of this study is to compare two different ways of helping patients with a condition called sepsis who need help breathing using a machine called a ventilator. The investigators want to study which way of setting the ventilator is better for the lungs. Here are the main questions the investigators want to answer: How does the amount of air in the lungs and the way it moves differ between the two ways? How does the way air spreads out in different parts of the lungs differ between the two ways? In this study, the investigators will take special pictures of the lungs using a machine called a CT scan. The pictures will show us how much the lungs stretch and how much air is in different parts of the lungs. The investigators will compare two different ways of using the ventilator: one personalized for each patient based on their breathing, and another way that is commonly used. By comparing these two ways, the investigators hope to learn which one is better for helping patients with sepsis who need the ventilator. This information can help doctors make better decisions about how to care for these patients and improve their breathing.

Recruiting14 enrollment criteria
12...7

Need Help? Contact our team!


We'll reach out to this number within 24 hrs