search

Active clinical trials for "Wounds and Injuries"

Results 521-530 of 4748

COMMAND Early Feasibility Study: Implantable BCI to Control a Digital Device for People With Paralysis...

Neurologic DisorderParalysis11 more

The Synchron motor neuroprosthesis (MNP) is intended to be used in subjects with severe motor impairment, unresponsive to medical or rehabilitative therapy and a persistent functioning motor cortex. The purpose of this research is to evaluate safety and feasibility. The MNP is a type of implantable brain computer interface which bypasses dysfunctional motor neurons. The device is designed to restore the transmission of neural signal from the cerebral cortex utilized for neuromuscular control of digital devices, resulting in a successful execution of non-mechanical digital commands.

Recruiting15 enrollment criteria

Treatment of Sleep Apnea in Patients With Cervical Spinal Cord Injury

Sleep ApneaSpinal Cord Injury

This study will investigate potential therapeutic approaches for sleep-disordered breathing (SDB) in patients with chronic cervical spine injury (>6 months post-injury).

Recruiting8 enrollment criteria

Targeted Plasticity Therapy for Upper Limb Rehabilitation in Spinal Cord Injuries

Spinal Cord InjuriesUpper Extremity Paresis

Texas Biomedical Device Center at UT Dallas has developed an innovative strategy to enhance recovery of motor and sensory function after neurological injury termed targeted plasticity therapy (TPT). This technique uses brief pulses of vagus nerve stimulation to engage pro-plasticity neuromodulatory circuits during rehabilitation exercises. Recovery is associated with neural plasticity in spared motor networks in the brain and spinal cord. Moreover, an early feasibility study and an independent, double-blind, placebo-controlled study in chronic stroke participants indicate that VNS is safe in participants with upper limb deficits, and yields a clinically-significant three-fold increase in neural connections during rehabilitation exercises. Given the track record of safety and potential for VNS to enhance recovery of upper limb motor function in spinal cord injured individuals, the purpose of this double blind randomized placebo controlled optional open-label extension study is to assess the safety of using a new device to deliver vagus nerve stimulation to reduce symptom severity in participants with SCI. Additionally, the study will assess the prospective benefit of the system and garner an initial estimate of efficacy for a subsequent trial. Participants may undergo additional sessions of training with VNS.

Recruiting37 enrollment criteria

Locomotor Training With Testosterone to Promote Bone and Muscle Health After Spinal Cord Injury...

Spinal Cord InjurySpinal Cord Injuries24 more

This pilot study will determine the feasibility of implementing a combinatory rehabilitation strategy involving testosterone replacement therapy (TRT) with locomotor training (LT; walking on a treadmill with assistance and overground walking) in men with testosterone deficiency and walking dysfunction after incomplete or complete spinal cord injury. The investigators hypothesize that LT+TRT treatment will improve muscle size and bone mineral density in men with low T and ambulatory dysfunction after incomplete or complete SCI, along with muscle fundtion and walking recovery in men with T low and ambulatory dysfunction ater incomplete SCI.

Recruiting42 enrollment criteria

Optical Monitoring With Near-Infrared Spectroscopy for Spinal Cord Injury Trial

Acute Spinal Cord InjurySpinal Cord Injuries

The study involves the 'first-in-human' evaluation of a novel optical sensor which uses near-infrared spectroscopy (NIRS) technology to assess oxygenation and hemodynamics of the injured spinal cord. The NIRS sensor is laid on top of the dura, at the site of the SCI, and emits near-infrared light signals into the cord to measure tissue oxygenation and tissue hemodynamics in real-time. Our testing of this novel NIRS sensor in patients with acute SCI represents the first step in translating this technology for human use.

Recruiting11 enrollment criteria

Comparison of Two Web-Based Education/Support Programs for Partner Caregivers of People With Spinal...

Spinal Cord InjuriesSpinal Cord Diseases

The purpose of this research study is to compare the effect of two different types of education and support programs for partner caregivers of people with spinal cord injury (SCI).

Recruiting10 enrollment criteria

Effect of Giving Reduced Fluid in Children After Trauma

Critical IllnessPediatrics3 more

This study is designed to help decide how much intravenous (IV) fluid should be given to pediatric trauma patients. No standard currently exists for managing fluids in critically ill pediatric trauma patients, and many fluid strategies are now in practice. For decades, trauma patients got high volumes of IV fluid. Recent studies in adults show that patients actually do better by giving less fluid. The investigators do not know if this is true in children and this study is designed to answer that question and provide guidelines for IV fluid management in children after trauma.

Recruiting15 enrollment criteria

An Exercise Intervention to Reduce Neuropathic Pain and Brain Inflammation After Spinal Cord Injury...

Spinal Cord Injuries

Spinal Cord Injury (SCI) leads to alterations in brain structure and function by spinal nerve damage, secondary inflammatory responses, and by the consequences of living with paralysis and neuropathic pain. Physical inactivity due to lower body paralysis rapidly leads to loss of muscle, and risk of heart disease. The leading cause of death after a spinal cord injury is cardiovascular disease, and just a year after injury, those with SCI have a peak exercise capacity half that of the unfit general population. The good news is that aerobic exercise reduces the risk of chronic metabolic and cardiorespiratory diseases, reduces inflammation and pain, and increases mood and quality of life. Exercise can also reduce brain inflammation, enhance endogenous analgesia, and increases the size of the hippocampus. The issue is that muscle paralysis in SCI restricts the ability to achieve the levels of exercise that is necessary for broad analgesic, anti-inflammatory and neuroprotective benefits. Arm exercise can have some effects on heart and lung capacity, but the small muscle mass is insufficient to produce more than modest aerobic work. With functional electrical stimulation (FES), leg muscles that are paralyzed can be made to contract, thereby allowing more of the body to be exercised. The full rowing stroke is produced by both the (stimulated) legs and arms, increasing the active muscle mass and resulting in an aerobic work-out that is intensive enough to improve heart, lung, and - maybe - brain function. In this clinical trial of sub-acute spinal cord injured subjects, the investigators will study how 12 weeks of FES-RT, in comparisons to 12 weeks of wait-list, changes pain, brain structure, endogenous opioid function and brain inflammation. The investigators will measure changes using positron emission tomography and magnetic resonance imaging. The investigators hypothesize a decrease in pain interference, an increase in hippocampal volume, increased endogenous opioid transmission in the periaqueductal gray, and decreased hippocampus neuroinflammation.

Recruiting24 enrollment criteria

The Effect of Ischemic Conditioning on Strength and Ambulation in Subjects With PAD

Peripheral Arterial DiseasePeripheral Vascular Disease4 more

Lower limb amputation is common in the United States, with approximately 150,000 amputations annually. Most individuals walking with a prosthesis demonstrate asymmetrical loading-i.e., they favor the amputated side by placing more weight and increased ground reaction forces through the intact limb-which likely contributes to increased metabolic cost of walking. Lack of adequate muscular strength in the lower limb to attenuate these forces places increased stress on the joints, which may be displaced proximally, and may play a role in reported knee and hip pain in the intact limb. Lower limb muscle weakness following amputation has been well documented. Increasing quadriceps strength is important after an amputation because it is positively correlated with gait speed. Gait speed may also be associated with successful community mobility, which leads to improved quality of life following amputation. Individuals with amputation who resume an active lifestyle are able to maintain strength. However, these individuals represent a minority of persons with lower limb amputation; most individuals report more barriers than motivators to adopt an active lifestyle. Ischemic conditioning (IC) may strengthen leg muscles and reduce the metabolic cost of activity after amputation. In IC, the limb is exposed to brief, repeated bouts of ischemia (reduced blood flow) immediately followed by reperfusion. IC has been shown to improve muscle performance in healthy and diseased populations. IC has also been used more recently in patients with peripheral artery disease (PAD) as an intervention to improve function, such as walking ability. Acute exposure to IC increases muscle strength and activation, both in healthy, active individuals and in those with severe neuromuscular dysfunction, such as stroke survivors. IC also attenuates muscular fatigue. Increased fatigue resistance at submaximal contraction levels following IC may be due to increased neural activation of skeletal muscle. Changes in neural activation of muscle may be particularly beneficial during cortical reorganization after amputation. Reduced quadriceps fatigue during submaximal activities may also drive changes in gait kinematics, such as increased knee flexion during loading and mid-stance. Exposure to IC may also increase the oxidative properties of skeletal muscle, offering a direct pathway to reduce metabolic cost. Therefore, IC may lead to cellular changes that lower the metabolic cost of activity. The primary aim of this study is to quantify the benefits of acute and chronic IC on quadriceps strength and walking economy in individuals with PAD and history of lower limb amputation.

Recruiting18 enrollment criteria

EO2 Oxygen Delivery To Study Success Rate of Surgically Closed Wounds

Surgical WoundDiabetes5 more

The investigators will test the efficacy of the novel oxygen diffusion dressing allows delivery tissue oxygenation via TransCu O2® Oxygen Delivery System for use in caring for patients with surgically closed wounds. The investigators hypothesize that using this novel oxygen diffusion dressing will reduce the likelihood of necrotic tissue as well as severe incisional scar post-surgical closure by improving transcutaneous oxygen levels during wound healing process. TransCu O2 Oxygen Delivery System is a novel wound healing therapy that promises to enhance tissue hydration, which in turn may lead to quick epithelialization essential to reduce the likelihood of formation of necrotic tissue and excessive scars.

Recruiting4 enrollment criteria
1...525354...475

Need Help? Contact our team!


We'll reach out to this number within 24 hrs