search
Back to results

Muscle Insulin Resistance in Aging (Mirage)

Primary Purpose

Insulin Resistance, Sarcopenia

Status
Active
Phase
Not Applicable
Locations
United States
Study Type
Interventional
Intervention
Exercise
Energy Restriction-Induced Weight Loss
Sponsored by
AdventHealth Translational Research Institute
About
Eligibility
Locations
Arms
Outcomes
Full info

About this trial

This is an interventional basic science trial for Insulin Resistance focused on measuring insulin resistance, muscle, health education, exercise

Eligibility Criteria

65 Years - 80 Years (Older Adult)All SexesAccepts Healthy Volunteers

Inclusion Criteria:

  • 65-80 years of age
  • Stable weight (No Gain/Loss of >10 lbs in 6 months)
  • Sedentary (≤ 1 continuous exercise/week)
  • Non-smoker
  • BMI ≥ 30 kg/m2
  • Resting Blood Pressure ≤ 150 millimeters of mercury systolic and ≤ 95 millimeters of mercury diastolic
  • Note from Primary care physician/Cardiologist for exercise clearance if positive stress test symptoms were observed from exercise test
  • Must be willing to washout for 14 days from all diabetes medication and independent in self blood glucose monitoring during the washout periods (those with diabetes only)

Exclusion Criteria:

  • Clinically significant cardiovascular disease including history of myocardial infarction, within the past year
  • Peripheral Vascular Disease
  • Hepatic, renal, muscular/neuromuscular, or active hematologic/oncologic disease
  • Clinically diminished pulse
  • Presence of bruits in lower extremities
  • Previous history of pulmonary emboli
  • Peripheral Neuropathy

Sites / Locations

  • Translational Research Institute for Metabolism and Diabetes

Arms of the Study

Arm 1

Arm 2

Arm 3

Arm Type

Experimental

Experimental

No Intervention

Arm Label

Exercise training protocol

Energy restriction-induced weight loss

Health Education

Arm Description

Outcomes

Primary Outcome Measures

Measure of intramyocellular lipids
A percutaneous muscle biopsy of the vastus lateralis will be obtained, and the intramyocellular lipids will be measured by high-performance liquid chromatography-tandem mass spectrometry.

Secondary Outcome Measures

Measure of insulin sensitivity
Insulin sensitivity will be measured using an intravenous catheter (glucose clamps) that will be placed in the antecubital vein for subsequent insulin and glucose infusions and for stable isotope infusions. This will measure insulin-stimulated changes in insulin signaling proteins and metabolism.

Full Information

First Posted
August 7, 2014
Last Updated
July 21, 2023
Sponsor
AdventHealth Translational Research Institute
search

1. Study Identification

Unique Protocol Identification Number
NCT02230839
Brief Title
Muscle Insulin Resistance in Aging (Mirage)
Official Title
Muscle Insulin Resistance In Aging
Study Type
Interventional

2. Study Status

Record Verification Date
July 2023
Overall Recruitment Status
Active, not recruiting
Study Start Date
June 2014 (undefined)
Primary Completion Date
December 2023 (Anticipated)
Study Completion Date
December 2023 (Anticipated)

3. Sponsor/Collaborators

Responsible Party, by Official Title
Sponsor
Name of the Sponsor
AdventHealth Translational Research Institute

4. Oversight

Studies a U.S. FDA-regulated Drug Product
No
Studies a U.S. FDA-regulated Device Product
No
Data Monitoring Committee
Yes

5. Study Description

Brief Summary
The purpose of this study is to provide information regarding potential factors underlying metabolic dysfunction, insulin resistance, and loss of muscle mass in aging muscle.
Detailed Description
Study Objectives: To determine the effects of diet-induced weight loss with and without the addition of exercise on mitochondrial biogenesis and energetic capacity, cellular redox state and insulin resistance. To determine the effects of diet-induced weight loss with and without the addition of exercise on intramyocellular lipid profiles. To determine the effects of diet-induced weight loss with and without exercise on skeletal muscle proteins mediating a program of autophagy and either loss or maintenance of muscle mass.

6. Conditions and Keywords

Primary Disease or Condition Being Studied in the Trial, or the Focus of the Study
Insulin Resistance, Sarcopenia
Keywords
insulin resistance, muscle, health education, exercise

7. Study Design

Primary Purpose
Basic Science
Study Phase
Not Applicable
Interventional Study Model
Parallel Assignment
Masking
None (Open Label)
Allocation
Randomized
Enrollment
200 (Anticipated)

8. Arms, Groups, and Interventions

Arm Title
Exercise training protocol
Arm Type
Experimental
Arm Title
Energy restriction-induced weight loss
Arm Type
Experimental
Arm Title
Health Education
Arm Type
No Intervention
Intervention Type
Behavioral
Intervention Name(s)
Exercise
Intervention Description
Participants will complete a progressive 6-month exercise training program, 4-5 days per week, 45 min per session (180 min per week), consisting mostly of walking (both outside and on an indoor treadmill) but with the option to include stationary cycling, elliptical and rowing machines, similar to what we have utilized previously to elicit significant improvements in insulin sensitivity in both middle-age and older adults (52-55). Beginning at week 8, these subjects will also perform 2 non-consecutive resistance exercise sessions per week, 30 min per session, focused on major muscle groups using resistance machines (total days of exercise will still be 4 to 5).
Intervention Type
Behavioral
Intervention Name(s)
Energy Restriction-Induced Weight Loss
Intervention Description
The goal of the weight loss intervention will be to produce a weight loss of 10% body weight. A reduction of 500-1000 kcal/day - based on baseline weight -and low fat (<30% of calories from fat) diet will be used as part of the weight loss intervention.
Primary Outcome Measure Information:
Title
Measure of intramyocellular lipids
Description
A percutaneous muscle biopsy of the vastus lateralis will be obtained, and the intramyocellular lipids will be measured by high-performance liquid chromatography-tandem mass spectrometry.
Time Frame
Visit 3 ~22 hours
Secondary Outcome Measure Information:
Title
Measure of insulin sensitivity
Description
Insulin sensitivity will be measured using an intravenous catheter (glucose clamps) that will be placed in the antecubital vein for subsequent insulin and glucose infusions and for stable isotope infusions. This will measure insulin-stimulated changes in insulin signaling proteins and metabolism.
Time Frame
Visit 3 ~22 hours
Other Pre-specified Outcome Measures:
Title
Measure muscle strength and power
Description
Muscle strength and power will be measured in participants who have successfully completed all screening procedures. Measurement is obtained using a short physical performance battery, knee extension, and muscle power testing using a pneumatic-driven dynamometer.
Time Frame
Visit 2 (baseline) and 6 months

10. Eligibility

Sex
All
Minimum Age & Unit of Time
65 Years
Maximum Age & Unit of Time
80 Years
Accepts Healthy Volunteers
Accepts Healthy Volunteers
Eligibility Criteria
Inclusion Criteria: 65-80 years of age Stable weight (No Gain/Loss of >10 lbs in 6 months) Sedentary (≤ 1 continuous exercise/week) Non-smoker BMI ≥ 30 kg/m2 Resting Blood Pressure ≤ 150 millimeters of mercury systolic and ≤ 95 millimeters of mercury diastolic Note from Primary care physician/Cardiologist for exercise clearance if positive stress test symptoms were observed from exercise test Must be willing to washout for 14 days from all diabetes medication and independent in self blood glucose monitoring during the washout periods (those with diabetes only) Exclusion Criteria: Clinically significant cardiovascular disease including history of myocardial infarction, within the past year Peripheral Vascular Disease Hepatic, renal, muscular/neuromuscular, or active hematologic/oncologic disease Clinically diminished pulse Presence of bruits in lower extremities Previous history of pulmonary emboli Peripheral Neuropathy
Overall Study Officials:
First Name & Middle Initial & Last Name & Degree
Bret Goodpaster, PhD
Organizational Affiliation
Translational Research Institute for Metabolism and Diabetes
Official's Role
Principal Investigator
Facility Information:
Facility Name
Translational Research Institute for Metabolism and Diabetes
City
Orlando
State/Province
Florida
ZIP/Postal Code
32804
Country
United States

12. IPD Sharing Statement

Citations:
PubMed Identifier
9164283
Citation
Evans W. Functional and metabolic consequences of sarcopenia. J Nutr. 1997 May;127(5 Suppl):998S-1003S. doi: 10.1093/jn/127.5.998S.
Results Reference
background
PubMed Identifier
8429405
Citation
Evans WJ, Campbell WW. Sarcopenia and age-related changes in body composition and functional capacity. J Nutr. 1993 Feb;123(2 Suppl):465-8. doi: 10.1093/jn/123.suppl_2.465.
Results Reference
background
PubMed Identifier
9164280
Citation
Rosenberg IH. Sarcopenia: origins and clinical relevance. J Nutr. 1997 May;127(5 Suppl):990S-991S. doi: 10.1093/jn/127.5.990S.
Results Reference
background
PubMed Identifier
16595758
Citation
Ogden CL, Carroll MD, Curtin LR, McDowell MA, Tabak CJ, Flegal KM. Prevalence of overweight and obesity in the United States, 1999-2004. JAMA. 2006 Apr 5;295(13):1549-55. doi: 10.1001/jama.295.13.1549.
Results Reference
background
PubMed Identifier
16280421
Citation
Villareal DT, Apovian CM, Kushner RF, Klein S; American Society for Nutrition; NAASO, The Obesity Society. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am J Clin Nutr. 2005 Nov;82(5):923-34. doi: 10.1093/ajcn/82.5.923.
Results Reference
background
PubMed Identifier
11356778
Citation
Goodpaster BH, Carlson CL, Visser M, Kelley DE, Scherzinger A, Harris TB, Stamm E, Newman AB. Attenuation of skeletal muscle and strength in the elderly: The Health ABC Study. J Appl Physiol (1985). 2001 Jun;90(6):2157-65. doi: 10.1152/jappl.2001.90.6.2157.
Results Reference
background
PubMed Identifier
19549734
Citation
Park SW, Goodpaster BH, Lee JS, Kuller LH, Boudreau R, de Rekeneire N, Harris TB, Kritchevsky S, Tylavsky FA, Nevitt M, Cho YW, Newman AB; Health, Aging, and Body Composition Study. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009 Nov;32(11):1993-7. doi: 10.2337/dc09-0264. Epub 2009 Jun 23.
Results Reference
background
PubMed Identifier
12750520
Citation
Petersen KF, Befroy D, Dufour S, Dziura J, Ariyan C, Rothman DL, DiPietro L, Cline GW, Shulman GI. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003 May 16;300(5622):1140-2. doi: 10.1126/science.1082889.
Results Reference
background
PubMed Identifier
19401446
Citation
Amati F, Dube JJ, Coen PM, Stefanovic-Racic M, Toledo FG, Goodpaster BH. Physical inactivity and obesity underlie the insulin resistance of aging. Diabetes Care. 2009 Aug;32(8):1547-9. doi: 10.2337/dc09-0267. Epub 2009 Apr 28.
Results Reference
background
PubMed Identifier
10600804
Citation
Kelley DE, Goodpaster B, Wing RR, Simoneau JA. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol. 1999 Dec;277(6):E1130-41. doi: 10.1152/ajpendo.1999.277.6.E1130.
Results Reference
background
PubMed Identifier
8675680
Citation
Kelley DE, Mintun MA, Watkins SC, Simoneau JA, Jadali F, Fredrickson A, Beattie J, Theriault R. The effect of non-insulin-dependent diabetes mellitus and obesity on glucose transport and phosphorylation in skeletal muscle. J Clin Invest. 1996 Jun 15;97(12):2705-13. doi: 10.1172/JCI118724.
Results Reference
background
PubMed Identifier
3061759
Citation
Lillioja S, Bogardus C. Obesity and insulin resistance: lessons learned from the Pima Indians. Diabetes Metab Rev. 1988 Aug;4(5):517-40. doi: 10.1002/dmr.5610040508.
Results Reference
background
PubMed Identifier
1468302
Citation
Devlin JT. Effects of exercise on insulin sensitivity in humans. Diabetes Care. 1992 Nov;15(11):1690-3. doi: 10.2337/diacare.15.11.1690.
Results Reference
background
PubMed Identifier
8422780
Citation
Bogardus C. Insulin resistance in the pathogenesis of NIDDM in Pima Indians. Diabetes Care. 1993 Jan;16(1):228-31. doi: 10.2337/diacare.16.1.228.
Results Reference
background
PubMed Identifier
1587398
Citation
Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes. 1992 Jun;41(6):715-22. doi: 10.2337/diab.41.6.715.
Results Reference
background
PubMed Identifier
7030834
Citation
Rizza RA, Mandarino LJ, Gerich JE. Mechanism and significance of insulin resistance in non-insulin-dependent diabetes mellitus. Diabetes. 1981 Dec;30(12):990-5. doi: 10.2337/diab.30.12.990.
Results Reference
background
PubMed Identifier
12525490
Citation
Chavez JA, Knotts TA, Wang LP, Li G, Dobrowsky RT, Florant GL, Summers SA. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem. 2003 Mar 21;278(12):10297-303. doi: 10.1074/jbc.M212307200. Epub 2003 Jan 13.
Results Reference
background
PubMed Identifier
15220355
Citation
Stratford S, Hoehn KL, Liu F, Summers SA. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem. 2004 Aug 27;279(35):36608-15. doi: 10.1074/jbc.M406499200. Epub 2004 Jun 25.
Results Reference
background
PubMed Identifier
2211599
Citation
Turinsky J, O'Sullivan DM, Bayly BP. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J Biol Chem. 1990 Oct 5;265(28):16880-5.
Results Reference
background
PubMed Identifier
17339025
Citation
Holland WL, Brozinick JT, Wang LP, Hawkins ED, Sargent KM, Liu Y, Narra K, Hoehn KL, Knotts TA, Siesky A, Nelson DH, Karathanasis SK, Fontenot GK, Birnbaum MJ, Summers SA. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007 Mar;5(3):167-79. doi: 10.1016/j.cmet.2007.01.002.
Results Reference
background
PubMed Identifier
14693694
Citation
Adams JM 2nd, Pratipanawatr T, Berria R, Wang E, DeFronzo RA, Sullards MC, Mandarino LJ. Ceramide content is increased in skeletal muscle from obese insulin-resistant humans. Diabetes. 2004 Jan;53(1):25-31. doi: 10.2337/diabetes.53.1.25.
Results Reference
background
PubMed Identifier
12086926
Citation
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 2002 Jul;51(7):2005-11. doi: 10.2337/diabetes.51.7.2005.
Results Reference
background
PubMed Identifier
16464906
Citation
Bruce CR, Thrush AB, Mertz VA, Bezaire V, Chabowski A, Heigenhauser GJ, Dyck DJ. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab. 2006 Jul;291(1):E99-E107. doi: 10.1152/ajpendo.00587.2005. Epub 2006 Feb 7.
Results Reference
background
PubMed Identifier
20299618
Citation
Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Increased intramuscular lipid synthesis and low saturation relate to insulin sensitivity in endurance-trained athletes. J Appl Physiol (1985). 2010 May;108(5):1134-41. doi: 10.1152/japplphysiol.00684.2009. Epub 2010 Mar 18.
Results Reference
background
PubMed Identifier
20035285
Citation
Perreault L, Bergman BC, Hunerdosse DM, Playdon MC, Eckel RH. Inflexibility in intramuscular triglyceride fractional synthesis distinguishes prediabetes from obesity in humans. Obesity (Silver Spring). 2010 Aug;18(8):1524-31. doi: 10.1038/oby.2009.454. Epub 2009 Dec 24.
Results Reference
background
PubMed Identifier
19581421
Citation
Bergman BC, Perreault L, Hunerdosse DM, Koehler MC, Samek AM, Eckel RH. Intramuscular lipid metabolism in the insulin resistance of smoking. Diabetes. 2009 Oct;58(10):2220-7. doi: 10.2337/db09-0481. Epub 2009 Jul 6.
Results Reference
background
PubMed Identifier
15662004
Citation
Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005 Jan 21;307(5708):384-7. doi: 10.1126/science.1104343.
Results Reference
background
PubMed Identifier
23520283
Citation
Holloszy JO. "Deficiency" of mitochondria in muscle does not cause insulin resistance. Diabetes. 2013 Apr;62(4):1036-40. doi: 10.2337/db12-1107.
Results Reference
background
PubMed Identifier
20674860
Citation
Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y, Sun C, Liu X, Jefferson LS, Xiong J, Lanoue KF, Chang Z, Lynch CJ, Wang H, Shi Y. Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab. 2010 Aug 4;12(2):154-65. doi: 10.1016/j.cmet.2010.07.003.
Results Reference
background
PubMed Identifier
21109199
Citation
Lee HY, Choi CS, Birkenfeld AL, Alves TC, Jornayvaz FR, Jurczak MJ, Zhang D, Woo DK, Shadel GS, Ladiges W, Rabinovitch PS, Santos JH, Petersen KF, Samuel VT, Shulman GI. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance. Cell Metab. 2010 Dec 1;12(6):668-74. doi: 10.1016/j.cmet.2010.11.004.
Results Reference
background
PubMed Identifier
17276357
Citation
Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, Liu ZX, Dong J, Mustard KJ, Hawley SA, Befroy D, Pypaert M, Hardie DG, Young LH, Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 2007 Feb;5(2):151-6. doi: 10.1016/j.cmet.2007.01.008.
Results Reference
background
PubMed Identifier
19945408
Citation
Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M. Autophagy is required to maintain muscle mass. Cell Metab. 2009 Dec;10(6):507-15. doi: 10.1016/j.cmet.2009.10.008.
Results Reference
background
PubMed Identifier
19918075
Citation
Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci U S A. 2009 Dec 1;106(48):20405-10. doi: 10.1073/pnas.0911570106. Epub 2009 Nov 16. Erratum In: Proc Natl Acad Sci U S A. 2014 Nov 4;111(44):15851.
Results Reference
background
PubMed Identifier
20400940
Citation
Romanello V, Guadagnin E, Gomes L, Roder I, Sandri C, Petersen Y, Milan G, Masiero E, Del Piccolo P, Foretz M, Scorrano L, Rudolf R, Sandri M. Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 2010 May 19;29(10):1774-85. doi: 10.1038/emboj.2010.60. Epub 2010 Apr 16.
Results Reference
background
PubMed Identifier
17341128
Citation
Civitarese AE, Carling S, Heilbronn LK, Hulver MH, Ukropcova B, Deutsch WA, Smith SR, Ravussin E; CALERIE Pennington Team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007 Mar;4(3):e76. doi: 10.1371/journal.pmed.0040076.
Results Reference
background
PubMed Identifier
17389710
Citation
Fontana L, Villareal DT, Weiss EP, Racette SB, Steger-May K, Klein S, Holloszy JO; Washington University School of Medicine CALERIE Group. Calorie restriction or exercise: effects on coronary heart disease risk factors. A randomized, controlled trial. Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E197-202. doi: 10.1152/ajpendo.00102.2007. Epub 2007 Mar 27.
Results Reference
background
PubMed Identifier
16595757
Citation
Heilbronn LK, de Jonge L, Frisard MI, DeLany JP, Larson-Meyer DE, Rood J, Nguyen T, Martin CK, Volaufova J, Most MM, Greenway FL, Smith SR, Deutsch WA, Williamson DA, Ravussin E; Pennington CALERIE Team. Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA. 2006 Apr 5;295(13):1539-48. doi: 10.1001/jama.295.13.1539. Erratum In: JAMA. 2006 Jun 7;295(21):2482.
Results Reference
background
PubMed Identifier
20953373
Citation
Santanasto AJ, Glynn NW, Newman MA, Taylor CA, Brooks MM, Goodpaster BH, Newman AB. Impact of weight loss on physical function with changes in strength, muscle mass, and muscle fat infiltration in overweight to moderately obese older adults: a randomized clinical trial. J Obes. 2011;2011:516576. doi: 10.1155/2011/516576. Epub 2010 Oct 10.
Results Reference
background
PubMed Identifier
10983905
Citation
Messier SP, Loeser RF, Mitchell MN, Valle G, Morgan TP, Rejeski WJ, Ettinger WH. Exercise and weight loss in obese older adults with knee osteoarthritis: a preliminary study. J Am Geriatr Soc. 2000 Sep;48(9):1062-72. doi: 10.1111/j.1532-5415.2000.tb04781.x.
Results Reference
background
PubMed Identifier
17095635
Citation
Weiss EP, Racette SB, Villareal DT, Fontana L, Steger-May K, Schechtman KB, Klein S, Ehsani AA, Holloszy JO; Washington University School of Medicine CALERIE Group. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss. J Appl Physiol (1985). 2007 Feb;102(2):634-40. doi: 10.1152/japplphysiol.00853.2006. Epub 2006 Nov 9.
Results Reference
background
PubMed Identifier
11739435
Citation
Goodpaster BH, He J, Watkins S, Kelley DE. Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab. 2001 Dec;86(12):5755-61. doi: 10.1210/jcem.86.12.8075.
Results Reference
background
PubMed Identifier
12351431
Citation
Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002 Oct;51(10):2944-50. doi: 10.2337/diabetes.51.10.2944.
Results Reference
background
PubMed Identifier
16337440
Citation
Ritov VB, Menshikova EV, Kelley DE. Analysis of cardiolipin in human muscle biopsy. J Chromatogr B Analyt Technol Biomed Life Sci. 2006 Feb 2;831(1-2):63-71. doi: 10.1016/j.jchromb.2005.11.031. Epub 2005 Dec 6.
Results Reference
background
PubMed Identifier
15351277
Citation
Ritov VB, Menshikova EV, Kelley DE. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem. 2004 Oct 1;333(1):27-38. doi: 10.1016/j.ab.2004.05.014.
Results Reference
background
PubMed Identifier
18319352
Citation
Dube JJ, Amati F, Stefanovic-Racic M, Toledo FG, Sauers SE, Goodpaster BH. Exercise-induced alterations in intramyocellular lipids and insulin resistance: the athlete's paradox revisited. Am J Physiol Endocrinol Metab. 2008 May;294(5):E882-8. doi: 10.1152/ajpendo.00769.2007. Epub 2008 Mar 4.
Results Reference
background
PubMed Identifier
12941756
Citation
Goodpaster BH, Katsiaras A, Kelley DE. Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes. 2003 Sep;52(9):2191-7. doi: 10.2337/diabetes.52.9.2191.
Results Reference
background
PubMed Identifier
15226098
Citation
Pruchnic R, Katsiaras A, He J, Kelley DE, Winters C, Goodpaster BH. Exercise training increases intramyocellular lipid and oxidative capacity in older adults. Am J Physiol Endocrinol Metab. 2004 Nov;287(5):E857-62. doi: 10.1152/ajpendo.00459.2003. Epub 2004 Jun 29.
Results Reference
background
PubMed Identifier
21327867
Citation
Dube JJ, Amati F, Toledo FG, Stefanovic-Racic M, Rossi A, Coen P, Goodpaster BH. Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia. 2011 May;54(5):1147-56. doi: 10.1007/s00125-011-2065-0. Epub 2011 Feb 17.
Results Reference
background
PubMed Identifier
18818386
Citation
Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Delmonico MJ, Kritchevsky SB, Pahor M, Newman AB. Effects of physical activity on strength and skeletal muscle fat infiltration in older adults: a randomized controlled trial. J Appl Physiol (1985). 2008 Nov;105(5):1498-503. doi: 10.1152/japplphysiol.90425.2008. Epub 2008 Sep 25.
Results Reference
background
PubMed Identifier
17167156
Citation
LIFE Study Investigators; Pahor M, Blair SN, Espeland M, Fielding R, Gill TM, Guralnik JM, Hadley EC, King AC, Kritchevsky SB, Maraldi C, Miller ME, Newman AB, Rejeski WJ, Romashkan S, Studenski S. Effects of a physical activity intervention on measures of physical performance: Results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study. J Gerontol A Biol Sci Med Sci. 2006 Nov;61(11):1157-65. doi: 10.1093/gerona/61.11.1157. Erratum In: J Gerontol A Biol Sci Med Sci. 2007 Mar;62(3):337.
Results Reference
background
PubMed Identifier
10778870
Citation
Goodpaster BH, Theriault R, Watkins SC, Kelley DE. Intramuscular lipid content is increased in obesity and decreased by weight loss. Metabolism. 2000 Apr;49(4):467-72. doi: 10.1016/s0026-0495(00)80010-4.
Results Reference
background
PubMed Identifier
19467914
Citation
Gnaiger E. Capacity of oxidative phosphorylation in human skeletal muscle: new perspectives of mitochondrial physiology. Int J Biochem Cell Biol. 2009 Oct;41(10):1837-45. doi: 10.1016/j.biocel.2009.03.013. Epub 2009 Apr 2.
Results Reference
background
PubMed Identifier
16309877
Citation
Hutter E, Unterluggauer H, Garedew A, Jansen-Durr P, Gnaiger E. High-resolution respirometry--a modern tool in aging research. Exp Gerontol. 2006 Jan;41(1):103-9. doi: 10.1016/j.exger.2005.09.011. Epub 2005 Nov 23. Erratum In: Exp Gerontol. 2006 Apr;41(4):457.
Results Reference
background
PubMed Identifier
10102702
Citation
Goodpaster BH, Kelley DE, Wing RR, Meier A, Thaete FL. Effects of weight loss on regional fat distribution and insulin sensitivity in obesity. Diabetes. 1999 Apr;48(4):839-47. doi: 10.2337/diabetes.48.4.839.
Results Reference
background
PubMed Identifier
10731493
Citation
Goodpaster BH, Thaete FL, Kelley DE. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 2000 Apr;71(4):885-92. doi: 10.1093/ajcn/71.4.885.
Results Reference
background
PubMed Identifier
17536063
Citation
Toledo FG, Menshikova EV, Ritov VB, Azuma K, Radikova Z, DeLany J, Kelley DE. Effects of physical activity and weight loss on skeletal muscle mitochondria and relationship with glucose control in type 2 diabetes. Diabetes. 2007 Aug;56(8):2142-7. doi: 10.2337/db07-0141. Epub 2007 May 29.
Results Reference
background
PubMed Identifier
16684829
Citation
Toledo FG, Watkins S, Kelley DE. Changes induced by physical activity and weight loss in the morphology of intermyofibrillar mitochondria in obese men and women. J Clin Endocrinol Metab. 2006 Aug;91(8):3224-7. doi: 10.1210/jc.2006-0002. Epub 2006 May 9.
Results Reference
background
PubMed Identifier
16828308
Citation
Bielawski J, Szulc ZM, Hannun YA, Bielawska A. Simultaneous quantitative analysis of bioactive sphingolipids by high-performance liquid chromatography-tandem mass spectrometry. Methods. 2006 Jun;39(2):82-91. doi: 10.1016/j.ymeth.2006.05.004.
Results Reference
background
PubMed Identifier
16307720
Citation
Sun D, Cree MG, Wolfe RR. Quantification of the concentration and 13C tracer enrichment of long-chain fatty acyl-coenzyme A in muscle by liquid chromatography/mass spectrometry. Anal Biochem. 2006 Feb 1;349(1):87-95. doi: 10.1016/j.ab.2005.10.006. Epub 2005 Oct 26.
Results Reference
background
PubMed Identifier
14514869
Citation
Jubrias SA, Crowther GJ, Shankland EG, Gronka RK, Conley KE. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. J Physiol. 2003 Dec 1;553(Pt 2):589-99. doi: 10.1113/jphysiol.2003.045872. Epub 2003 Sep 26.
Results Reference
background
PubMed Identifier
8024651
Citation
Blei ML, Conley KE, Kushmerick MJ. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993 Jun;465:203-22. doi: 10.1113/jphysiol.1993.sp019673. Erratum In: J Physiol (Lond) 1994 Mar 15;475(3):548.
Results Reference
background
Links:
URL
http://www.tri-md.org
Description
Florida Hospital Translational Research Institute for Metabolism and Diabetes

Learn more about this trial

Muscle Insulin Resistance in Aging (Mirage)

We'll reach out to this number within 24 hrs