search

Active clinical trials for "Gait Disorders, Neurologic"

Results 1-10 of 272

Effect of High-Intensity Gait Training Using a Treadmill on Locomotion Recovery in Traumatic Brain...

Traumatic Brain InjuryGait Disorders1 more

The project will consist of subjects who have suffered Traumatic Brain Injury (TBI) and who are able to ambulate on treadmill with or without a harness system. This will be a 4-week controlled study consisting of two groups of TBI patients, high-intensity intervention group and low-intensity control group. Both groups will receive physical therapy treatment 3 times per week for 1 hour. The intervention group will undergo 30-minute sessions of high-intensity walking on a treadmill with an overhead harness attached for safety. In addition, they will also get up to 30-minutes of low-intensity physical therapy in order to receive 1 hour of treatment time. The control group will undergo only low-intensity physical therapy activities for 1-hour. Low-intensity physical therapy will include strength exercises, stretches, balance, and low-intensity gait training. All participants in both groups will complete these outcome measures on the first day of the study, after 2 weeks of participation, and again at the end of 4 weeks or on their last day before discharge from Carilion's services. Later on, all participants in both groups will be followed up to complete the same set of outcome measures at the end of 1 month since completion of the protocol. This follow up session will take up to 45 minutes to complete.

Recruiting12 enrollment criteria

Programming Strategy of VFS for Gait Impairments in PD

Parkinson's DiseaseDeep Brain Stimulation2 more

Variable Frequency Stimulation(VFS) is a stimulation pattern applied in Deep Brain Stimulation(DBS) therapy for Parkinson's disease(PD). Peking Union Medical College Hospital was the first centre conducting research on VFS. The studies in the past have resembled conclusion that VFS provides improvement not only in the major symptoms such as tremor and rigidity, but also in gait and balance disorder. However, the best programming strategy of VFS has not met agreement. The random-controlled double blinded crossover study is designed for participants who underwent DBS surgery in bilateral subthalamic nucleus for parkinson's disease. The investigators study several strategies on programming and observe the improvement of symptom to look for the best one. A 4-month follow-up is designed to observe a relatively long-term effectiveness of VFS. The study intends to gather more clinical evidence to guide further studies on VFS application.

Recruiting15 enrollment criteria

Support for Physical Activity in Everyday Life With Parkinson's Disease

Parkinson DiseasePhysical Activity3 more

This study aims to determine the effects of a motor-cognitive exercise intervention, delivered in the home environment using eHealth methods, among people with Parkinson's disease. The intervention will support and motivate motor training, combined with cognitive training, aimed at attentional and executive functions, among people at mild-moderate disease stages. The main hypothesis is that unsupervised motor-cognitive training in the home environment using eHealth will lead to improvements in gait performance, increased physical activity levels and improved perceived health.

Recruiting10 enrollment criteria

Effect of Brain Stimulation on Stepping Performance in Stroke Survivors and Healthy Adults

Vascular AccidentBrain4 more

Participants are being asked to participate in a research study conducted by Shih-Chiao Tseng, PT, Ph.D. at Texas Woman's University. This research study is to determine whether low-intensive brain stimulation can enhance learning of a leg movement task. The investigators also want to know if brain stimulation can improve the nerve function and walking performance. Our goal is to understand any relationship between brain stimulation and overall movement control improvement. Participants have been invited to join this research if they have had a stroke before or they are healthy adults aged 21 years or older. Research evidence shows stroke can induce permanent brain damage and therefore may cause a person to have trouble learning a new task. This in turn may significantly impact the recovery of motor function in stroke survivors. In addition, the investigators also want to know how a healthy person learns this new leg task and see if her/his learning pattern differs from a stroke survivor. This study comprises two phases: Phase I study investigates short-term effects of brain stimulation on leg skill learning and only requires two visits to TWU. The total time commitment for Phase I study will be about 6.5 hours, 3.5 hours on the first visit and three hours on the second visit; Phase II study is an expanded version of Phase I study to investigate long-term effects of brain stimulation on leg skill learning and requires to complete 12 visits of exercise training paired with brain stimulation over a four-week period and additional one visit for follow-up test. The total time commitment for Phase II study will be about 20 hours, a total of 18 hours for 12 exercise training sessions and two hours for a follow-up test. The investigators hypothesize that people with chronic stroke will show a slower rate of acquiring this leg skill as compared to healthy adults. The investigators also hypothesize that co-applying brain stimulation with 12 sessions of exercise training will enhance skill learning of this leg task for people with chronic stroke and this 12-session exercise program may exert beneficial influences on the nerve function and leg muscle activation, and consequentially improve motor control for walking.

Recruiting14 enrollment criteria

Benefits of Different Exercise Types to Enhance Walking for PD

Parkinson DiseaseGait Disorders1 more

Background: Gait disturbance is one of the most common complaints from patients with Parkinson's disease (PD). It is well-established that people with PD have motor learning impairments. To enhance motor learning, several methods have been recommended, such as sleep, non-invasive brain stimulation techniques, and aerobic exercise. To date, only 2 studies have investigated the effects of acute aerobic exercise on motor learning in people with PD. It is yet unclear whether adding aerobic exercise after multiple motor training sessions can enhance motor learning in people with PD. Additionally, most prior evidences utilized moderate to high intensity aerobic exercise to facilitate motor learning, it is yet unclear whether other types of exercise (e.g., resistance training) could induce similar beneficial effects. Therefore, this proposed project is specifically designed to investigate the effects of adding aerobic or resistance exercise after motor training. To take a step further, this project will also determine the patient characteristics who may benefit from the intervention. Objectives: (1) To examine whether adding specific exercise after training can facilitate learning on patients with Parkinson's disease. (2) To determine the characteristics of participants who may benefit from these types of intervention approach. Methods: A total of 76 participants with idiopathic PD diagnosed by neurologists will be recruited. All eligible participants will be randomized into one of the 4 groups: aerobic group (AEX), resistance group (REX), conventional PT group (CPT), and control group (CON). All participants will receive 12 sessions of gait training. All outcome measures will be assessed before the intervention (pre-test), after the 6th intervention session (mid-test), after all 12 intervention sessions (post-test), and 1-month after the intervention (follow-up test). All assessments will be performed by an independent research assistant who will be blinded to the group allocation of the participants. The primary outcome will be gait performance, and the secondary outcomes will include measurements of cognitive and behavioral functions. Additionally, transcranial magnetic stimulation will be used to examine the changes of corticomotor excitability associated with the interventions.

Recruiting11 enrollment criteria

Optimizing Training in Severe Post-Stroke Walking Impairment

StrokeChronic Stroke4 more

Difficulty walking is common after a stroke. Although physical rehabilitation helps a little with the improvement of walking ability, recovery is usually incomplete. The purpose of this study is to explore how two different treadmill training approaches influence walking speed, symmetry, and balance in people with chronic severe stroke-related walking impairment. The two approaches involve either forward or backwards treadmill training. This study will look at changes in walking performance and balance, before and after training. This study may lead to more efficient methods for improving walking performance and balance after stroke.

Recruiting11 enrollment criteria

Split-belt Treadmill Training to Rehabilitate Freezing of Gait and Balance in Parkinson's Disease...

Parkinson DiseaseFreezing of Gait2 more

Parkinson's disease (PD) related gait and balance disorders are challenging to treat because they cannot be optimized with pharmacological intervention alone. This treatment gap is important to address because gait asymmetry and incoordination are associated with increased falls in this population, which can be functionally debilitating and lead to increased morbidity and mortality. Freezing of gait (FOG) has also been associated with reduced quality of life independent of its association with impaired mobility. Gait disorders therefore represent an unmet need in the treatment of PD. A split-belt treadmill (SB-TM) can be used to adjust the speed of each leg separately and individuals can be prompted to 'adapt' to an asymmetric gait and 're-adapt' with return to symmetrical gait in a phenomenon known as 'after-effect'.

Recruiting12 enrollment criteria

Effect of a Progressive Treadmill Training Protocol for Parkinson's Disease

Parkinson DiseaseGait6 more

The primary objective of this single-center, no-profit, longitudinal interventional randomized controlled, single-blind trial is to compare the effects of 2 different treadmill training treatments using C-Mill: the experimental one, endowed with augmented virtual reality (AVR) applications, versus the conventional one, the standard treadmill training in PD patients with gait and or balance disturbances. The main questions the study aims to answer are 1) Is the experimental treatment more effective than the conventional one? 2) Is it possible to identify predictive and indicative biomarkers of an outcome measure of rehabilitation using extracellular vesicles (cEVs) assessed by Raman spectroscopy? Participants will be randomized into two groups: the experimental group that will receive the experimental intervention, and the control group that will receive the conventional intervention. Both groups will train three times per week for 8 weeks, the first session starting from 25 minutes (25'). The experimental and the conventional treatments are planned to be progressive and will be individualized to the participant's level of performance. Clinical, neuropsychological, and instrumental variables will be collected at baseline (T0), at the end of the treatment (T1), and 3 months after the end of treatment (T2). At 6 months after the end of treatment (T3), a phone interview will be performed. Both within-group and between-group analyses will be conducted. Biosamples will be collected at baseline (T0) and at the end of treatment (T1).

Recruiting17 enrollment criteria

ACTive Exoskeleton for Unilaterally-Assisted Locomotion (ACTUAL)

Stroke SequelaeGait1 more

Walking difficulties are common symptoms after stroke, significantly reducing quality of life. Walking recovery is therefore one of the main priorities of rehabilitation. Wearable powered exoskeletons have been developed to provide lower limb assistance and enable training for persons with gait impairments by using typical physiological movement patterns. Exoskeleton were originally designed for individuals without any walking capacities, such as subjects with a complete spinal cord injury. Recent systematic reviews suggested that lower limb exoskeletons could be valid tools to restore independent walking in subjects with residual motor function, such as persons post-stroke.The aim of the study was to identify the end-users needs and to develop a user-centered-based control system for the TWIN lower limb exoskeleton to provide an efficient post-stroke rehabilitation of gait. The investigators thus carried out the development and validation through evaluation sessions performed on healthy clinical experts and persons with stroke to evaluate TWIN-Acta usability, acceptability, and barriers of usage. A phase two includes a pilot study of efficacy of using the TWINActa for gait rehabilitation for persons with stroke.

Recruiting37 enrollment criteria

Effectiveness of Multiple Robotic Gait-Devices for Improving Walking Ability in Subacute Stroke...

Gait DisordersNeurologic2 more

The purpose of this study is to know the effectiveness of different robotic devices for gait rehabilitation in stroke patients

Recruiting8 enrollment criteria
12...28

Need Help? Contact our team!


We'll reach out to this number within 24 hrs