Neural Stimulation for Hand Grasp in People With Tetraplegia
TetraplegiaA selective neural stimulation as the investigators propose allows to stimulate several muscles via a single electrode. Neural stimulation requires less energy for muscle activation. In our approach, 2 electrodes will be implanted above the elbow on the median, the ulnar and the radial nerves. This considerably reduces the number of implanted elements and therefore i) the risk of infection, ii) the risk of failure, iii) the surgical risk through minimally invasive surgery. Our main hypothesis is that multipolar neural electrical stimulation of the median and the ulnar nerve (flexion) and the radial nerve (extension) allows: on the one hand, a selective, individualized motor activation (muscle by muscle) on the other hand, a synergistic motor activation (association of several muscles) for the purpose of production of functional movements.
Brain Computer Interface: Neuroprosthetic Control of a Motorized Exoskeleton
Traumatic Tetraplegia With Cervical Cord InjuryThe BCI project falls within the very broad field of brain machine interfaces. Its multiple applications include the compensation of motor deficits. The subject of the present protocol is the first test of the system in man on the compensation of motor deficits by an epidural brain implant enabling an electrocorticogram (EcoG) to be recorded.
Functional Electrical Stimulation (FES) and Reconstructive Tetraplegia Hand and Arm Surgery
Spinal Cord Injury CervicalFES is a common and established method in the rehabilitation of persons with spinal cord injury (SCI). Some known effects of FES were investigated in several studies e.g. avoiding disuse and denervation atrophy, improving muscle force, power output and endurance changing muscle fibre type, increasing cross sectional area of muscle, increasing muscle mass, activation of nerve sprouting, reducing spasticity and motor learning. Most of the studies investigated the impact of FES in the lower limbs. For the upper extremities fewer studies exist. However, it is supposed that the effects of FES are similar. In the rehabilitation of persons with tetraplegia, FES, especially the stimulation of the upper extremities triggered by electromyography (EMG) is an established method to generally improve hand and arm function. However, none of those studies has investigated the effect of FES in combination with reconstructive tetraplegia hand surgery. Improved muscle strength is supposed to improve the functional outcome in participation. Additionally, FES could increase the motor learning process. Supported by the clinical observation we hypothesize that FES has a positive influence on the outcome of surgical reconstruction of tendon and/or nerve transfers.
Transspinal Stimulation With and Without Blood Flow Restricted Exercise Via Telehealth in Persons...
Tetraplegia/TetraparesisThe purpose of the current study is to evaluate whether a home-based, telehealth-supported intervention combining Blood Flow Restricted Exercise (BES) and Transspinal Stimulation (TS) will improve motor and functional abilities greater than BES+sham TS in persons with chronic, incomplete tetraplegia.
Extracorporeal Shockwave Therapy for Spasticity in People With Spinal Cord Injury
Spinal Cord InjuriesSpasticity6 morePeople with spinal cord injury (SCI) experience a host of secondary complications that can impact their quality of life and functional independence. One of the more prevalent complications is spasticity, which occurs in response to spinal cord damage and the resulting disruption of motor pathways. Common symptoms include spasms and stiffness, and can occur more than once per hour in many people with SCI. Spasticity can have a negative impact over many quality of life domains, including loss of functional independence, activity limitations, and even employment. Its impact on health domains is also pronounced, with many people who have spasticity reporting mood disorders, depression, pain, sleep disturbances, and contractures. Spasticity can interfere with post-injury rehabilitation and lead to hospitalization. There are many treatments for spasticity in this population. However, many do not have long-term efficacy, and, if they do, they are often pharmacological in nature and carry side effects that could limit function or affect health. The goal of this pilot, randomized-controlled study is to investigate the potential efficacy and safety of a non-invasive treatment with a low side effect profile, extracorporeal shockwave therapy (ESWT). ESWT has shown some benefits in people with post-stroke spasticity with no long term side effects. Thirty individuals with chronic, traumatic SCI will be recruited. Fifteen will be provided with ESWT while the other fifteen will be given a sham treatment. Clinical and self-report measures of spasticity and its impact on quality of life will be collected, as well as quantitative ultrasound measures of muscle architecture and stiffness. The ultimate goal of this pilot project is to collect the data necessary to apply for a larger randomized-controlled trial. Conducting a larger trial will allow for a more powerful estimation of safety and efficacy of ESWT as a treatment for spasticity in people with SCI.
Brain Controlled Spinal Cord Stimulation in Participants With Cervical Spinal Cord Injury for Upper...
Cervical Spinal Cord InjuryTetraplegiaCervical spinal cord stimulation can elicit arm and hand movements through recruitment of proprioceptive neurons in the dorsal roots. In participants with cervical spinal cord injury, the spare roots bellow the lesion can be used to reactivate motor function. Decoding of motor intentions can be achieved through implantable electrocorticography (ECoG) devices. In this study, the investigators will use an investigational system using ECoG signal recording over the motor cortex to drive muscle specific electrical epidural spinal cord stimulation (EES). The investigators will assess the safety and preliminary efficacy of this system in 3 participants.
Wrist Extensor MEP Up-conditioning for Individuals With Incomplete Spinal Cord Injury
Spinal Cord InjuriesQuadriplegiaThe purpose of this study is to examine the relationship between common clinical assessments and measurements of the function of brain-spinal cord-muscle connections, and to examine the effects of training a brain-spinal cord-muscle response in individuals with incomplete spinal cord injury. A transcranial magnetic stimulator (TMS) is used for examining brain-to-muscle pathways. This stimulator produces a magnetic field for a very short period of time and indirectly stimulates brain cells with little or no discomfort. The target muscle is the wrist extensor (extensor carpi radialis) muscle that bends the wrist back. It is hypothesized that training the wrist extensor muscle response to transcranial magnetic stimulation will increase the strength of the brain-to-muscle pathway, which will improve the ability to move the arm. It is hoped that the results of this training study will help in developing therapy strategies for individuals, promoting better understanding of clinical assessments, and understanding treatments that aim to improve function recovery in people with spinal cord injury (SCI). This study requires 30 visits, and each visit will last approximately 1.5 hours.
Spinal Cord Stimulation for Functional Recovery in Humans With Tetraplegia
Spinal Cord InjuryIn support of the long-term goal of developing new strategies to increase limb function after SCI, the objectives of this proposal are to: 1) Examine the behavioral and physiological effects of TESS on upper-limb muscles after cervical SCI; and 2) Maximize the recovery of reaching and grasping potential by using tailored TESS in a task-specific manner with motor training. Veterans with cervical spinal injuries and healthy volunteers will be recruited for this study.
Transspinal Stimulation Plus Locomotor Training for SCI
Spinal Cord InjuriesParaplegia4 moreLocomotor training is often used with the aim to improve corticospinal function and walking ability in individuals with Spinal Cord Injury. Excitingly, the benefits of locomotor training may be augmented by noninvasive electrical stimulation of the spinal cord and enhance motor recovery at SCI. This study will compare the effects of priming locomotor training with high-frequency noninvasive thoracolumbar spinal stimulation. In people with motor-incomplete SCI, a series of clinical and electrical tests of brain and spinal cord function will be performed before and after 40 sessions of locomotor training where spinal stimulation is delivered immediately before either lying down or during standing.
A Neuroprosthesis for Seated Posture and Balance
Spinal Cord InjuryParalysis2 moreThe purpose of this study is to evaluate a surgically implanted functional electrical stimulation (FES) system to facilitate stability of the trunk and hips. FES involves applying small electric currents to the nerves, which cause the muscles to contract. This study evaluates how stabilizing and stiffening the trunk with FES can change the way spinal cord injured volunteers sit, breathe, reach, push a wheelchair, or roll in bed.